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Abstract: In this research, thermal boundary layer in the forced convective heat transfer of nanofluids in fully

developed lamiar flow i a circular tube 1s considered in which thermal boundary layer grows. In thermal

boundary layer temperature increases gradually. By analysis of conservation laws, it 1s concluded that the
density of the base fluid has important role in the thermal boundary layer because both nanoparticle volume
fraction and axial velocity of the nanofluid depend on it. Also to obtain temperature profile, the energy equation

does not require to couple with momentum equations despite velocity has radial and axial distribution.
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INTRODUCTION

Conventional heat transfer fluids, e.g., water are poor
heat transfer fluids and have low efficiency in cooling or
heating processes. Numerous methods have been taken
to improve the thermal behavior of these fluids by
suspending micro or larger-sized particle materials in
liquids (Kalkac and Pramuanjaroenkij, 2009). Nanofluid is
a liquid (base fluid) in which nanometer-sized solid
particles are suspended; these particles are known as
nanoparticles. Suspended nanoparticles in various base
fluids can alter the fluid flow and heat transfer
characteristics of the base fluids (Wang and Mujumdar,
2007).

The nanofuid has feature which 15 quite different
from conv entional solid-liquid mixtures in which millimeter
or muicrometer-sized particles are added, these larger-sized
particles settle rapidly, clog flow chammels, erode pipelines
and cause severe pressure drops (Xuan and Roetzel,
2000).

Nanofluids are proposed for a variety of applications
i several mmportant fields, such as microelectromics,
aerospace, transportation and medicine (Zhu ef af., 2006).
Forced convective heat transfer of nanofluids is
interesting field in literatures (He et al., 2009). In these

researches, conservation laws were solved and
temperature profile was obtained.
In this research, researchers consider forced

convective heat transfer of nanofluids when the nanofluid
15 flowing steadily with laminar motion inside a smooth
circular tube m the region in which velocity profile 1s fully
developed. Temperature of the nanofluid is uniform over
the flow cross section, the focus is at point where heat

transfer begins due to temperature of the tube surface
which 1s larger than nanofluid temperature, following this
point which heat transfer takes place, researchers are
concerned with the development of the temperature
profile named thermal boundary layer (Kays and
Crawford, 1993).

MATERIALS AND METHODS

The nanofluid is assumed as a single phase fluid. The
nanoparticles can develop a slip velocity with respect to
the base fluid. Assumptions in the fully developed laminar
flow and thermal entry length region of the tube are:

»  Steady state flow

*  Newtoman fluid and negligible viscous dissipation

+  Velocity of the nanofluid in any point has one
component (fully developed region u,#0)

»  Nanoparticles and base fluid are locally in thermal
equilibrium

»  The tube surface has temperature which 1s larger
than the nanofluid bulk temperature in whole of the
tube

Governing equations for nanofluids n the thermal
boundary layer include the continuity equation (mass
balance), equation of motion (momentum balance) and
energy equation (energy balance). They are given in the
cylindrical coordmnates, respectively m the following.
Continuity equation of the nanofluid:

Oput) _ 1)
oz

Corresponding Author: Mansour Kalbasi, Department of Chemical Engineering, Amirkabir University of Technology,

Hafez Avenue, Tehran, Iran



J. Eng. Applied Sci., 8 (4): 116-119, 2013

Where:
P, = The density of the nanofluid
u, = The nanofluid axial velocity
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this 18 mcorrect result for p,;, since temperature 1s not
constant in the thermal boundary layer. Continuity
equation of the nanoparticle:
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Where:
¢ = The nanoparticle volume fraction

1z J- = Nanofluid mass rates due to diffusion

Momentum equation of the nanofluid in the radial
direction (Bird et al., 2007):

_@_lM_ 61:11’ +1:;.9+ pnfgr_ 0
or r ér dz T
Trr = {i“‘nf an] [GZZ] > Tzr 7Mnf {%} (3)
Toe = [%“‘nf - an] [%J
oz

Where:
p = The nanofluid pressure
g = The gravitational acceleration
T = The shear stress

U = The viscosity of the nanofhud
ks = The bulk viscosity of the nanofluid

Momentum equation of the nanofluid in the axial

direction:
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Energy equation of the nanofluid:
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Where:

T = The nanofluid temperature

{c,)y = The specific heat of the nanofluid

k; = The thermal conductivity of the nanoflnd

To calculate (c,),: researchers can use Eq. 6:

olp,c,, )+ (1-0)(pic, ;) ©)
Cp,nf =
op, +(1-@lp,
Where:
¢,, = The specific heat of the nanoparticle (it can be

assumed as constant)

¢, = The specific heat of the base fluid (function of
temperature)

P, = The density of the nanoparticle (it can be assumed
as constant)

pr = The density of the base fluid (function of

temperature)

The density of the nanofluid can be calculated by the
mixing rule as:
P =P, +(1—@p;

In Eqg. 5, thermal effects due to the nanoparticle has
been incorporated in k;, as k= koot kynme Ko 18 the
static thermal conductivity when nanoparticles are
stationary to the base fluid (classical models), as an
example, it can be calculated by well-known model of
Maxwell (1904):

N kp+2kf+2(zkp-kf)cpk
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Where:
k; = Function of temperature 1s the thermal conductivity
of base fluid

k, = It can be assumed as constant is the thermal
conductivity of nanoparticles

Kipame 18 the enhanced thermal conductivity

generated by movement of nanoparticles (Kleimnstreuer

and Feng, 2011). Jang and Choi (2004) derived following

equation for k.. as:
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Where:
C, = A proportional constant
dy; = The diameter of the base fluid molecule
d, = The diameter of the nanoparticle
Rey, = The Reynolds number defined for random motion

velocity of nanoparticles and Pr is Prandtl number
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Fig. 1: The circular tube at z = 0 heat transfer begins

Unknowns in the partial differential equations
(Eq. 1-5) are:

*  Nanoparticle volume fraction (¢)
*  Nanoflud temperature (T)

¢ Nanofluid pressure (p)

¢ Nanofluid axial velocity (1)

Boundary conditions of the problem are:

aT
a !
u, =f(r) ou,
T=T "
at z=0, atr=20
p:h(l’) @:0
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0
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or
Thermal condition
intube wall atr = R(tuberadius )
u, =0

Thermal condition of tube surface is considered n
the heat transfer case (e.g., constant wall temperature).
Profiles of f(r), g(r) and h{r) are profiles of velocity,
nanoparticle volume fraction and pressure at z = 0 (Fig. 1)
which are functions of radius and T, i1s the imtial
temperature of the nanofluid at z = 0.

RESULTS AND DISCUSSION

By considering Eq. 1, it can be obtained as:
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Subscript i denotes boundary conditions at z = 0, as
shown m Fig. 1 which are given Applymng scaling
analysis to Eq. 2, diffusion terms (j, and j,) cen be
neglected comparing with
(Buongiorno, 2006):
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In Eq. 12, term (py),- , 13 known since p;1s function of
temperature and the temperature is given in z = 0,
therefore ¢ in the thermal boundary layer depends on p.
Since, (py), - o/pe=1 b decreases in all points of the thermal
boundary layer comparing with their corresponding poit
at z=0 and with the same radius. With derivation of
Eq. 12, researchers can obtain as:
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In Eq. 13, term (1 - g(r)) is positive since g(r) as
nanoparticle volume fraction 15 always between O and 1
and therefore dd/dps=0.
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Equation 15 indicates that from center of the

tube (r = 0) to surface of the tube (r = R) nanoparticle

volume fraction () decreases at each cross section of the
tube. Using Eq. 12 for ¢, u, can be obtained as:
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Equation 16 shows that u, has explicit dependency to
the temperature since p; is function of the temperature.
Now to obtain temperature profile in the thermal boundary
layer, only Eq. 5 must be solved since all parameters of it
are functions of temperature as:
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Therefore, without coupling five differential

equations all unknowns can be obtained, firstly
temperature can be calculated by solving Eq. 17 then axial
velocity (u,) can be obtained by Eq. 9 since p; 1s function
of temperature. Using Eq. 4 and 5, the pressure
distribution can be obtained.

CONCLUSION

One qualitative analysis of conservation laws of
forced convective heat transfer of nanofluids in the fully
developed laminar flow in a horizontal circular tube with
warm surface in which thermal boundary layer grows has
been presented. Mathematical analysis of conservation
laws indicates that both profiles of nanoparticle volume
fraction and axial velocity of the nanofluid depend on
density of base fluid in whole of the tube. In other words
when base fluid has constant thermophysical properties,
distribution of nanoparticle volume fraction and axial
velocity of nanofluid are unhanded comparing with
corresponding boundary conditions.
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