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Abstract: The fundamental principle in the fields of DNA computing and DNA nanotechnology is based on
the complementary paring of the Deoxyribonucleic Acid (DNA). In this field of research, it 1s essential to obtain
good DNA sequences in order to obtain accurate DNA-based computational information. In this process,
however there are four constraints invoelved, namely H, ..., stmilarity, continuty and hairpin. In addition, two
other constraints also play a role to mamtain the uniformity m the sequence of the GC-content and the melting
temperature (T,,) that would arise. Therefore, a DNA sequence design tool 13 needed to facilitate the design
process with the ability to monitor and completely satisfy the specified constraints. Tn this study, a
biologically-inspired DNA sequence design algorithm is presented and it allows generated sets of DNA that
satisfy the several thumb rules in the DNA sequence design. The algorithm is based on the Negative
Selection Algorithm (NSA). NSA 13 a common techmque inspired by the negative selection process that
occurs during the maturation of the T cells in the thymus. The proposed algorithm is able to prevent
risks of fraying strands of the DNA and to limit cross hybridizations. In addition, it is able to design
unique sequences. Furthermore, the NSA based algorithm can prevent the formation of self~complimentary and
hairpin structures of certain lengths and only allows minimum mteraction with neighbouring sequences.
In this study, the results are compared to an Ant Colony Optimization (ACO) based on the DNA
sequence design tool. The analysis shows that the NSA based algorithm performs better than ACO in
generating the DNA sequences that satisfy the given constraints.
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INTRODUCTION

The inception of the Human Genome Project in 1989
encompasses the goal of sequencing and identifying all
3 billion chemical umits in the human genetic mstruction
set. From there on researchers believe that the significant
scientific and technological breakthrough in the 21st
century would be related to the processing and
interpretation of the vast information that was currently
being revealed from sequencing the genomes. Protein
and Deoxyribonucleic Acid (DNA) are examples of
the genomic sequences and self-assembly and
self-complimentary are the two known unique properties
of the DNA. These features enable the DNA to save an
enormous amount of data and perform massive parallel
reactions that have been exploited by scientists to open
new avenues for further advancement in many fields like
biotechnology, nanotechnology and even computer
science, especially in the field of DNA computing.

Instead of using the traditional silicon-based
computer technologies, DNA computing or bio-molecular

computing uses the DNA itself for computing. The
computation uses specific biochemical reactions between
the different DNA strands as found by the Watson-Crick
complementary based pairing which allows DNA
computing to have an advantageous property such as
having a vast memory capacity with massive parallelism.
However, a successful computation depends on the
quality of the DNA sequences used and a good DNA
sequence design is therefore, the essence of achieving
high computation accuracy. But however, a DNA
sequence design is not a trivial task. Adleman (1994) who
demonstrated the possibility of using DNA to compute
and solve complex problems expresses his doubts on an
all-purpose library of sequences that can effectively cater
for the requirements of all laboratory experiments. His
concern 15 due to the differences in the experimental
requirements. Kashiwamura et al. (2003) stressed the need
of a systematic method for desigmng the DNA sequences
because a design of the DNA sequence is only reliant on
the protocol of biological experiments. Furthermore,
Khalid states that the in vitro reactions may lead to
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incorrect computing solutions because of the biochemical
complexity of the experiment which fails to repeat identical
results for the same problem even when using the same
algorithm. Thus, many researchers focus on improving the
rehability and efficiency of the DNA computing
(Kobayashi and Kondo, 2002). The necessity in solving
these challenges is to design a good hybridization
between a sequence and its base pairing complement in
order to retrieve the information stored in the sequences
and to operate the computation processes. The aim is to
have a stable duplex where the complement and the
two sequences do not complement one another but are
two important design requirements. Thus, various
heuristics-based approaches have been developed to
meet these requirements in order to produce good DNA
sequences.

For the last 2 decades, computer scientists turn to
nature and biclogy m their quest for effective and efficient
solutions for solving complex problems. Natural biological
systems, such as the genetic algorithm has intrinsically
posed great features and delivered many great concepts.
Adaptability and robustness of biological systems are
among the leading attributes that motivate computer
scientists to use them as one of the computing algorithms.
The borrowmg of nature or biological principles and
processes, such as the human immune system has been
applied in many domains. The first known heuristic
approach in designing the DNA sequence was
proposed by Parsons and Johnson (1995) and followed by
Deaton et al. (1996a). Both study research on the genetic
algorithm to design DNA sequences. Deaton et al.
(1996a, b) uses the Hamming distance for measuring the
similarity between the DNA strands i order to generate
a unique DNA strand. As Fang et al. (2005) used genetic
algorithm to solve the DNA fragment assembly problem.
Genetic algorithm is applied again in designing DNA
sequences but has been enhanced with a tumng
function by using a different heuristic algorithm as
proposed by Kikuchi and Chakraborty (2006). Alba and
Luque (2008) hybridized the genetic algorithm with PALS
(Parallel Adaptive Learmung Search) while i the same year
Nebro et al. (2008) developed a grid-based genetic
algorithm for a DNA fragment assembly problem. Other
than the genetic algorithm, researchers have applied
other meta-heuristic algorithms, such as the Ant
Colony system by Meksangsouoy and Chaiyaratna
and Kurnmiawan (2009) proposed the population ant
colony optimization and the particle swarm optimization
by Ravi and Sanjay (2011).

However based on a survey by Indumathy and
Maheswari, the Artificial Immune System (AIS) principles
and processes have vet to be applied in designing a DNA
sequence and therefore, leave ample opportunities for
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exploration. Previous research has shown that the
Artificial Tmmune System (AIS) has attributes that
would fulfill such task. There are a number of motivating
factors to use the immune system as mspiration for
designing the DNA sequence which includes
recognition, diversity, memory, self-regulation and
learming (Dasgupta, 1998). In this study, a new DNA
sequence design 1s proposed and which 1s inspired by the
Negative Selection Algorithm (NSA) and CLONALG
(De Castro and von Zuben, 2002).

MATERIALS AND METHODS

DNA sequence design: James Watson and Francis Crick
discovered the chemical structure of the DNA in 1953.
DNA and Ribonucleic Acid (RNA) are the most common
nucleic acids. Nucleic acid is a macromolecule composed
of chains of monomeric nucleotide molecules that carry
genetic information or form structures within cells. The
DNA in particular which can be found in all cells and
viruses 1s a polymer that 1s strung together by a series of
monomers. Monomers construct the building blocks of
nucleic acids which are known as nucleotides. Each
nucleotide contains a sugar (deoxyribose), a phosphate
group and one of the four bases: Adenme (A), Thymine
(T), Guanine (G) or Cytosine (C). It 1s the combination of
these four bases that determines the precise function
and coding capacity of the DNA. By wing the same
4 alphabets, strings of these alphabets
mathematically represented the digital DNA.

A DNA is double stranded and is held together by
the hydrogen bonds between the base pairs. This is
termed as a duplex or double stranded DNA. Based on the
Watson-Crick DNA base pairing, A forms a base pair with
T and G forms a base pair with C. A sequence of DNA can
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be read from 5-end (the ribose end) of one sequence and
the 3-end (the phosphate end) of another sequence. This
complementary base 1s critical for various DNA testing
techniques and the basic principles of the DNA
chemistry. When put together in a unique way, the string
of A, C, T or G can serve as a template for messenger
Ribonucleic Acid (mRNA) which in turn codes for the
proteins. These proteins finally form the structure and
function for each and every process inside the cells and
inside an organism. As a result, sequences of DNA
coding for proteins enables the process of constructing
and maintaining the cell which is finally responsible for all
genetic However, perfect hybridization
between a sequence and its base-pairing complement 1s
important to retrieve the mformation stored in the
sequences and in order to operate the computation
processes.

Processes.
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Objectives and constraints: The DNA sequence design is
a multi-objective problem. However in this study, the
problem has been converted into a single objective
problem using the weighted sum method. The same
weighted sum method is used by Tribasuki and Khalid to
scale down a set of objectives into a single objective by
pre-multiplying each objective with a user-supplied
weight. However, setting the value of the weights 1s
not easy as it depends on the importance of each
objective in the context of the problem and a scaling
factor. The multi-objective problem 15 converted into a
single objective problem using Eq. 1 as follows:

min fy,, :2031f1 (1)

Equation 1 1s subjected to T, and GC_,.,
constraints where £ 1s the objective function for each 1,
{Hyewures similarity, hairpin, continuity} and w; is the
weight for each f. Here, w typically set by the decision
maker such that & _* o, = 1 and w=0. If all the weight is
committed or set to 1 then all objectives are treated
equally (Arora, 2004). The basic notations which will
be used comprehensively in this study are displayed in
Table 1. Table 2 shows the additional notations that are
used to formulate Eq. 2-4. Furthermore for a given
sequence xeA*, the numbers of non-blank nucleotides are
defined as Eq. 5 and 6. While a move of sequence x by i
bases are formulated as Eq. 7 and 8.

Design criteria: DNA computing would only succeed
when the hybridization between a DNA sequence and
base-pairing complement perfect.  This
important so that information stored in the DNA
molecules can be retrieved easily and for this reason the
design criteria is very important in the DNA design
process. In this study, four objective functions namely
H.. . similarity, hairpin and continuity and two other
constraints which are the GC-content and the melting
temperature are employed as the design criteria. The
selection and the calculations of all the design criteria
applied n this research are based on Shin et al. (2005).
The objective functions and constraints are described as
follows:

its is 18

H,... Ths function calculates the number of
complementary nucleotides in an attempt to prevent the
occuwrrence of a hybrid cross between two sequences
whereas the system shifting of one sequence against the
other on H, ... 18 basically the mimimum of the hamming
distance that was introduced by Garzon et al. (1997). This
method has an advantage and is considered as H,....
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Table 1: Basic definition

Notation Description
A {AC.GT}
X, yeA % y={A,C, G T}
[ Tength of x
X; (l=iglx]) ith nucleotide from 5°end of sequence x
z A set of n sequences with the same length |
% ith member of £
a Complementary base of a
1 Length of sequence

=

No. of sequences

Table 2: Natation

Equations No.
-1 2
bp(a.b)= {; 2t;1elz’wise
T.9)= {t) io?hirwise 3
eq(a.b) = {; ztlzwbrwise '
5

Length(x)= %n(xi)

i=l

()_ 1 as A 6
may= 0 otherwise

i . 7
- =0
Shift (x,1) = (o,
XX (=) i<0
rev(x)=x..x, forl<i< 8

which is then used to calculate numerous nucleotides that
are complementary. This strategy 1s to avoid cross
breeding between two sequences that belong in the shift
position. The equation of H, ..., 1s shown in Eq. 9. Where
Y, and %, are anti-parallel to each other. I, .. (x-y) 1s
divided into two measurements which are h,, and hy,.
Each section has a function, the function of h_, which
calculates the overall complement in Eq. 11 and hy, for the
penalty or limits the continuous complement as in Eq. 12.

Similarity: The function of the similarity 1s to calculate
the nucleotides which are similar in the two parallel
strands of the DNA where calculations are used to
maintain the umqueness of every strand of DNA that 1s
generated. The formulation of similarity is shown in
Table 3, Eq. 14 where %, and %, are parallel to each other.
Similarity (x, y) is also divided into a two functional
measurements which are 3, and S, S; they are
measurements for the overall complementary show in
Eq. 16 and 8., is the penalty measurement for the
continuous complementary area, Eq. 17. S, real value
between 0 and 1 and 8., is an integer between 1 and 1.
Both values presented are set by the user.
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Table 3: Equation function

Equations No. Equations No.
9 17
Frnens ()= 3 FH, 1 (5,3, Suun (%) = ZT(Ceq %.%.1).8...)
i1 =1
(. shift (rev (y),1) +
h 10 . B 18
nesexe (52 Y) = |j11>1{h (x,shift (rev(y),i) . if Je, st eq(x‘,y‘)fO,eq(x‘ﬂ,yw)
q(xY=1 forl<i<e e (X, Vi) =0
0 otherwise
1
= 11 E 19
h(xy) T{;bp(xi,yx), hﬁsxlength(y)J - Ehairpi.n 5)
i=1
pinlenﬁ,r,x)
! (R 2 1225 122 bp Kopriri> Fprives
h,, X y T(pr X],y‘ Xlength(y)} 12 2 o ( P T J) 20
e} PFo ot 1L pitden (p,r,i)/ 2
¢ ifdc,st. bp(xi,y)= 0
13 . i) = min(p+iloT—i- 2
. bp(xi+,yi+)=1f0r15j5(:, pinlen(p,r,i) =min{p+il-1-i-p)
cbp(x,y,i)= 7o
bP(XHm s Yieon ) =0
0 otherwise "
0o 14 _ S 22
fsimilant.y (Z)= 2 2 similarity (Zi,zj) fcmunmty E)fgconnnmty(zﬁ)
i=l il e
S, hift (v, i 135 continuity { x :Z(ZTca,i ,tg) 23
S]Irulallty(x y) ||<11{ *S(Xs}uﬁ(y ) 1 ( ) 1551 a2 ( ( ) )
S 05, hif (1) n if 3n, steq(a am) 1
16 c(a,i)=4for 1<j<mn,eq({a,a_ )=0 24
Sy, (Xy) = {Zeq (x.%:). Sd.sxlength(y)} (&9)= (820 =
P 0 otherwise
AH "
GC,, = (YO +2G)/ (WA +XT +YG +2G) 25 Tm(X)=m+l6'610g(Na ) *
Hairpin: This function is used to calculate the

probability of the occurrence of double structures of a
DNA strand. For example, a hairpin can be seen in Fig. 1
which shows the probability of the formation of ring
structures based on certain values of p (pair) and r (ring)
to 20-mer DNA sequence, this formula 1s based on
Kurniawan (2009) as shown in Eg. 19 and equation for the
pinlen shown in Eq. 19.

Continuity: To calculate whether any base (A, T, C, G) 1s
located m a continuous sequence m a DNA strand. This
happens when the objective 15 to get the calculation of
the amount base which 1s continuous from the set
sequences (Fig. 2). Kurmawan (2009), defines it as
shown in Eq. 22 where every 1, x represents %, Other than
the four functions of these objectives, there are two
constraints where each function of the constramts
maintains umformity for every strand of the DNA
sequence.

Ge e The percentage of G and C in a sequence is
very important, since it can influence the chemical
attributes that are existing in a DNA sequence
(Brenneman and Condon, 2002). The formulation of
GC e 18 shown in Eq. 25.

[afla]t]llc]s]lc][r]a]c|r]c]c]afa][r]c[c]A] ]

Pair (p)
. S —

NOENEE

—> Ring (r)

HREENARE

Fig. 1: Formation of sequence DNA being composed into
pair (p) and ring (1) = 6

Cell

C"T A A

(=]
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C"T c ?
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A

Fig. 2. The A, T, C, G elements of DNA representing cells
(antigen)
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Melting temperature (T,)): The melting temperature (Tm)
1s also an important factor m the experimental design of
the DNA sequence. This 1s the temperature at that point
where half of the two strands are split and separated to
form one strand while the melting temperature exceeds a
certain given threshold. In this study, the molar free
enthalpy of DNA duplex formation 1s then calculated.
This calculation is based on the nearest-neighbour
Santa TLucia Unified (Lucia, 1998) with
parameters taken from the same study. Equation 26
depicts the formulation where AH and AS are enthalpy
and entropy changes of the annealing reaction as shown
m Table 4 CT 1s the total oligonucleotide strand
concentration. For non-self-complementary molecules, CT
1s replaced by CT/4. Na+ is the salt concentration.

model

Artificial immune systems: The aim of this study 13 to
provide an introduction to Artificial Immune System (ATS)
and its relation to the proposed algorithm termed as
NS-CL AIS can be defined as a computing paradigm
mspired from the theory of the immune system with regard
to the functions, principles and mechanisms of the
immune system (De Castro and Timmis, 2002a). The
ummune system has a number of basic mechamsms. Each
mechanmism has different working principles, such as the
clonal selection, the negative selection and the danger
theory. The proposed method is examined in this study
from the results of the tailor made NSA with evolutionary
properties, 1.e., cloning and mutations. The proposed
algorithm in this study is based on the Negative Selection
Algorithm  (NSA) but the Clonal Optimization
method (CLONALG) 1s employed to optunize the
detectors in the NSA.

Negative selection: Forrest developed the NSA which is
mspired by the negative selection process. Theoretically,
natural immune systems are capable of differentiating any

Table 4: AH and A8 of Santa Lucia Unified

Unified
Sequence AH, AS,
AATT -7.9 2222
AT/AT 272 -20.4
AG/ICT -7.8 -21.0
ACIGT -84 224
TA/TA -7.2 2213
TG/CA -8.5 227
GA/TC -82 2222
GGICC -8.0 -19.9
GC/GC 9.8 -24.4
CG/ICG -10.6 -27.2
G-C base pair on the end 0.1 -2.8
A-T base pair on the end 2.3 4.1
Equilibrium rectification 0.0 -1.4

foreign cell (non-self) or molecule from the body’s own
cell. During the production of T lymphocyte cells (T cells),
there are receptors that are made for the censoring
process as the T cells have to be matured in the thymus
before they are released into the circulatory system.
This censoring process which occurs in the thymus is
called a mnegative selection. During the negative
selection process, the T cells that react against the
self-proteins are destroyed. Only the unrecognized or
unique T cells that do not bind to self-proteins are
allowed to leave the thymus and such successful T cells
then will then enter mnto the circulatory system. These
successful T cells have an interesting feature where they
can only be activated by foreign cells.

NSA has an important component of memory that
contains three sets of memory which are P, M and C. Set
P 15 the set of self-contamed and the goal of the NSA 15 to
provide a set of patterns where P should be protected. Set
M or Detector Set (M) 18 responsible for identifying all the
elements that produce a set containing non-self-elements.
NSA begins by generating candidate element (C)
randomly. Each element i C will be compared with the
elements in P. If there are similarities where the P element
can be identified by the elements in C then C may be
removed. If the element C does not identify any of the
elements of P then these elements are kept in the Detector
Set M. After generating a set of M sensors, the next step
in the APN, state in full is to monitor the system for the
presence of cells or non-self-antigens. Set P contains the
cells that are needed to be protected, set P can be formed
from set P or from new cells or where the sets of all
members of the set P are new. Set P and M are used to
identafy foreign cells in the system.

Clonal selection: Inspired by the natural clonal selection
theory which 18 proposed by Burnet n 1959, CLONALG
(Clonal Selection Algorithm) is designed by De Castro
and von Zuben (2000). CLONALG has been successfully
applied to deal with numerous complex computational
problems (Wang et al., 2004). The natural clonal selection
theory explains how an immune response 1s mounted
when a non-self-antigenic pattern is recognized by the B
cells. This theory 18 based on the response of the immune
systemn to antigen stimulation. Clonal selection occurs in
T and B cells. When the antibody is bound to the antigen,
the antibody will be activated and differentiated into
plasma or memory cells (De Castro and Timmis, 2002b).
One of the important principles in clonal selection 1s that
only cells that are capable of recognizing an antigen will
grow in numbers. CLLONALG generates an N population
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of antibodies and each set releases random solutions for
the process optimization. Over several iterations, some of
the best results are chosen where mutation 1s doubled and
itis trying to become a population of the candidate
solution as a whole. The new antibodies are then
evaluated and the best antibodies will be added to the
native population and the number of antibodies that
have the lowest value will be replaced with an antibody
derived from a new population which has a better value
(De Castro and von Zuben, 2002).

As researchers know, NSA has no evolutionary
properties, such as cloning that can be wsed for
optimization. There are two well-known principles where
the AIS which has been applied for optimization and
which is the immune network theory (De Castro and
Timmis, 2002a) and clonal selection principle (De Castro
and von Zuben, 2002). In this study, the focus 1s on clonal
selection. The immune network has a lot of potential and
will be studied in future planned projects. Cloning and
mutation are two important features of CLONALG that
promotes diversification. The clonal selection theory
states that antibodies that are able to recognize the
intruding antigens will be selected to proliferate by
cloning. Besides undergoing the cloning process, the
antibodies will be hyper mutated and the ones with better
affinity will be selected while the random antibodies will
be generated to enhance the variety of the population.
This is where the bone marrow will be responsible to
produce the antibodies. This ability for adaptation 1s
known as selection and affinity maturation by hyper
mutation or clonal selection (Garrett, 2004).

The NSCL algorithm: In order to understand the NSCL,
it is important to understand the difference between the
affinity used m AIS and the affimty introduced in NSCL.
The affinity used by NSCL is not the same as there are
two types of affinity measurements in NSCL which are the
local (single) and the global (a set of DNA strands)
affinity. Tn this study, the proposed algorithm described
is based on the modified Negative Selection Algorithm
(NSA) and the Clonal Selection Algorithm (CLONALG). A
detailed and thorough discussion on the original
CLONALG algorithm can be found in De Castro and
von Zuben (2002). An overview of the NSCL
algorithm can be summarized as follows:

Set the iteration parameters r, n and p

Initialization: Generate random population of T cell in P that is in
cormpliance with the constraints

Moaove population P into C as Selfdata

Detector Generation

Cycle: While iteration <r, DO

T cell presentation:
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For each T cell (DNA strand) in P, DO
Determine its local affinity in P
Move the best T cell in P into M as the new detector
Clonal expansion: Clone T cell with the best affinity in M. The clone size
is the pre-determined n strands and must be in compliance with the
constraints
Affinity maturation: Mutate all cloned T cell in M
Meta-dinamics:
Randomly create a new population of T-cells and insert into M
For each T cell in M, DO
Determine its affinity
Compare with low quality elements in C
Tf'a T cell of M has a better Global atfinity then a C*s Selfdata
Eliminate the C’s Selfdata and move the better T cell from
MtoC
Calculate the global affinity of C
Update P with T cell in C
Clear P and C
r+

The objective of the NSCL is to find a good set of
DNA strands that satisfy the given constramnts. NSCL 1s
designed to obtain a set of DNA sequences where each
sequence 18 unique or cammot be hybridized with other
sequences in the set. In this research ions, namely H,......
and similarity are chosen to estimate the uniqueness of
each DNA sequence. Another two additional functions,
the hairpin and the continuity are used to prevent the
secondary structure of a DNA sequence. GC,_ ., and
melting temperature are used as the constraints where the
ranges for these constramts are set by user’s preference.
The formulations for all objectives and constraints are
displayed in Table 4. There are three parameters that need
to be predefined which are r, n and p. After setting the
parameters, the first step is the initialization which is to
generate a set of T cells (DNA strands) randomly but
must satisty the given constraints before a strand can
be accepted as part of the first set P of T cells which in
NSA 15 termed as selfdata.

After the initialization process, the next phase is a
NSA process known as Detector generation. An
interesting aspect of this phase is that it is responsible for
managing a population of DNA strands (i.e., immature T
cells) that do not have any siumilarity with other cells in
order to find a unique DNA sequence. This problem is
known as self-nonself discrimination. The detector
generation phase is a cyclic process and the number of
iterations (1) of the detector generation process has to be
determined before the NSCL starts operating. While the
iteration is less than r, the affinity for each T cell in P will
be determined before it is presented to each selfdata in C.
If the T cell pattern matches a selfdata in C and any
detector of M, the T cell will be removed or deleted and if
itis not similar, the T cell will be moved into memory, M as
a new detector for further processes. The next phase,
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clonal expansion is the evolutionary process where the
best T cell 1s cloned. The size of clone 1s a predetermined
parameter n. After the cloning task, the affinity maturation
will take place where all the cloned T cells will be mutated
to diversify the DNA strands sequence. The mutation
task 1s still guided by the rules and has to satisty the
glven constraints.

The next phase is
suppressions. In this phase, the NSCL will measure all
affinity of the T cells and then compare each T cell with
each element in C. If any elements of M are similar to a
selfdata in C, it will be deleted while a unique detector will
not be removed from M. However, if the affimty of the
detector 1s better than any of the selfdata in C, the better
detector (T cell) will replace the selfdata position in C.

detector application and

When the phase of detector application and suppressions
is completed, the global affinity of C will be determined
and the memory of P will be cleared for a new generation
of T cells. The detector generation will repeat the
same process until a pre-specified number of iterations
are reached.
RESULTS AND DISCUSSION

The sequence generated by generate-and-test
algorithm 1s performed on a computer equipped with
1.86 GHz processor and 2 GHz RAM. The programme
15 developed using the Visual Basic net The results
obtained are compared with the sequence generated
by Kurmawan (2009). All the variables for the
generation of the DNA sequences are listed in
Table 5.

In this experiment, the parameters value for H,,,...
and similarity (continuous parameter) and (h,, and S,
values were fixed at 6 while discontinuous parameter (hg,

and Sg,) is 0.17, continuity is 2. The hairpin formation was
set at least 6 base-pairings and a 6 base loop. The Melting

for NS-CL. are as
selection 15 1
30.

Number of
cloning size 1s

settings follows:

sequence; set to

The comparison of the DNA strands generated by
PACO and NS-CT. are shown in Table 6. The comparison
of the results 1s diplayed m Table 7 and when visually
compared in Fig. 3, they clearly show that the sequences
designed by NS-CL have higher H,,...... average value than
the sequences generated by PACO. However, the
sequences in this experiment show lower similarity
average value than the sequences designed by PACO.
The sequences designed by PACO and NS-CL have
similar value of hairpin that equals to zero but however,
the average value of continuity for NS-CL 1s larger than
PACO whichis 18.

Based on the results, the sequences obtained have a
lower average value at 67.3 than the sequences produced
by PACO at 75.3. As an overall, it can be concluded that
NS-CL performs better than PACO.

807 g Als
709 m pACO
5 607

£ 501
<

> 40
30
201
10

O Continuity ™ Tairpin ™ H, Similarity " Total

mearsure

Fig. 3: Comparison of results

Table 5: Parameter settings for generation of DNA sequences

Constraints (allowable range) Values

No. of sequences (1-10) 7

Length of sequences (8-20) 20

Continuity (1-3) t=2

Hairpin Rmin = 6, Pmin = 6
H-measure h, =6, hg, = 0.17%
Similarity S, =6, 85, = 0.17%

GC percentage Min = 2004, Max = 806

temperature was calculated using the Nearest-Neighbour Melting temperature method Eﬁf ngcﬂfﬁhaiofsﬁm
(NN) method with 1 M salt concentration and 10 nM DN A Na + 1M

concentration is set between 30-80°. The parameter & 10 nM

Table 6: DNA strands comparison between PACO and AIS method

AIS proposed method PACO method

Sequences Total Sequences Tatal
TTCTCTATTCTTCTTGTTCT 58 GCAGAACACACACCACCAAC T2
TCTGTGTCTCCTTCTTCCTA 62 CACACACACACACACACGAA T2
CCTTCGTTCCTTCCTGCGTC 71 ACACCACAACACCACATAGC 77
TCTCTTCACACTCCTCITCT 65 CAAGAGAACAACAACCAAGC 78
TCCGCTCCCTTCCGTCCTTC 69 CCACCACCACCACCACTACA 75
ATCTTGTCCTCTTCTCTCTT 72 CACACAAGACACCACAACAG 79
CTTCCATCCTTCACCTCTTT 74 TACAAGACACACAAGACACA T4
Total 471 Tatal 527
Average 67.3 Average 75.3
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Table 7: comparison of each fitness fiinction

Fitness PACO AIS proposed
function method method
Hiasure 61 32
Similarity 466 421
Contimaity 0 18
Hairpin 0 0
Total 527 471
Average 75.3 67.3
CONCLUSION

In this study, the proposed algorithm for the DNA
sequence design problems have been described in which
each base (A, T, C, G) in the DNA strand represents a
structure of a T cell that needs to be matured in the
Thymus. NS-CL is designed based on the Negative
Selection Algorithm (NSA) and Clonal Selection
Algorithm (CLONALG). The main objective of this
mtegration 1s that the NSA does not have the
evolutionary properties that can be used to mature the T
cell inside the thymus. Clomng and mutation helps
NS-CL to diversify the search for better DNA strands
created randomly in the imtialization process of NS-CL.
The results of the experiment are compared with PACO
which 1s an 1mitial experiment of the proposed algorithm.
The studies conducted show that the proposed NS-CT.
algorithm could be used to design a set of DNA
sequences for DNA computing. The sequences generated
based on this algorithm are better than the
sequences designed by PACO. However, these results
have not been compared to other advanced algorithms as
this study is just an attempt to explore ideas. Hence
for future studies, the NS-CL would be enhanced in order
to be compared with other advanced optimization
algorithms used in the DNA sequence design, such as the
Particle Swarm Optimization.
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