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Abstract: This study investigates the hybrid synchronization of Hyperchaotic Lorenz and Chen Systems via
adaptive control. Explicitly, researchers derive new results for the hybrid chaos synchronization of identical
Hyperchaotic Lorenz Systems, identical Hyperchaotic Chen Systems and non-identical Hyperchaotic Lorenz
and Chen Systems. In this study, Researchers assume that the parameters of both master and slave systems
are unknown and we devise adaptive hybrid synchronization schemes using the estimates of parameters for
both Master and Slave Systems. The adaptive hybrid synchronization results derived in this study are
established using Lyapunov Stability Theory. Since, the Lyapunov exponents are not required for these
calculations, the proposed Adaptive Control Method 18 very effective and convenient to achieve hybrid
synchronization of identical and non-identical Hyperchaotic Lorenz and Chen Systems. Numerical simulations
are shown to demonstrate the effectiveness of the proposed adaptive hybrid synchronization schemes for the
hyperchaotic systems addressed in this study.

Key words: Adaptive control, hyperchaos, hybrid synchronization, Hyperchaotic Lorenz System, Hyperchaotic

Chen System, India

INTRODUCTION

Chaotic Systems are non-linear dynamical systems
that are highly sensitive to initial conditions. This
sensitivity 15 popularly known as the butterfly effect
(Alligood et al., 1997). The chaos phenomenon was first
observed by Lorenz (1963).
Hyperchaotic System is usually defined as a Chaotic
System having more than one positive Lyapunov
exponent. The hyperchaos phenomenon was first
observed by Rossler (1979). A Hyperchaotic System has
the characteristics of high capacity, high security and
high efficiency. Thus, it has the potential of broad
applications m  non-linear circuits,
communications, lasers, neural networks, biclogical
systems and so on.

Synchronization of Chaotic Systems 1 a
phenomenon that may occur when two or more chaotic
oscillators are coupled or when a chaotic oscillator drives
another chaotic oscillator. Because of the butterfly effect
which causes the exponential divergence of the
trajectories of two identical Chaotic Systems started with
nearly the same initial conditions, synchronizing two

mn  weather models

secure

Chaotic Systems 1s seemingly a very challenging research
problem. In most of the chaos synchromzation
approaches, the master-slave or drive-response formalism
is used. If a particular Chaotic System is called a master or
dnive system and another Chaotic System 15 called a slave
or response system then the idea of
synchronization 1s to use the output of the master system
to control the slave system so that the output of the slave
system tracks the output of the master system
asymptotically.

Chaos is an interesting non-linear phenomenon and
it has been intensively and extensively studied in the last
three decades. Chaos Theory has wide applications in
several fields such as Physical Systems (Lakshmanan and
Murali, 1996), Chemical Systems (Han et al, 1995),
Ecological Systems (Blasius e al, 1999) and secure
communications, etc. (Cuomo ef al., 1993; Kocarev and
Parlitz, 1995).

In most of the chaos synchronization approaches, the
master-slave or drive-response formalism is used. If a
particular Chaotic System 1s called the master or drive
system and another Chaotic System 1s called the slave or
response system then the idea of synchronization is to

chaos
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use the output of the master system to control the slave
system so that the states of the slave system track the
states of the master system asymptotically. Simce, the
seminal research by Pecora and Carroll (1990) on complete
synchronization of Chaotic Systems, there has been
significant interest paid in the chaos literature on the
synchromization of Chaotic and Hyperchaotic Systems
(Pecora and Carroll, 1990; Ott et al., 1990, Yang and Chua,
1999 Parlk and Kwon, 2003; Hua and Guan, 2003; Ho and
Hung, 2002; Yassen, 2003, 2005; Tian et al, 2007,
Sundarapandian, 2011a-f, Chen and Lu, 2002; Jia and
Tang, 2009; Mascolo and Grassi, 1999, Tan ef al,
2003; Zhang et al, 2005, Utkin, 1977, Slotine and
Sastry, 1983; Sundarapandian and Sivaperumal, 201 1a, b;
Ge and Chen, 2004, Wang and Guan, 2006, Zhang and
Zhu, 2008; Chiang et al., 2008, J1a, 2007, Yan and L1, 2006;
Lietal., 2007, Sarasu and Sundarapandian, 2011).

In the last 2 decades, several approaches have been
developed for chaos synchromization such as the OGY
Method (Ott et al, 1990), Sampled-data Feedback
Synchronization Method (Yang and Chua, 1999), the
Time-delay Feedback Method (Park and Kwon, 2003;
Hua and Guan, 2003), the Active Control Method (Ho and
Hung, 2002; Yassen, 2005, Tian et al, 2007,
Sundarapandian, 2011a, b), the Adaptive Control Method
(Yassen, 2003; Chen and Lu, 2002; JTia and Tang, 2009;
Sundarapandian, 2011¢, d), the Backstepping Method
(Mascolo and Grassi, 1999; Tan ef al., 2003; Zhang et al.,
2005), the Sliding Mode Control Method (Utkin, 1977;
Slotine and Sastry, 1983; Sundarapandian and
Sivaperumal, 2011a, b) and others.

So far, various synchronization methods have been
developed such as the complete synchronization
(Pecora and Carroll, 1990), the phase synchromzation
(Ge and Chen, 2004), the generalized synchromzation
(Wang and Guan, 2006), the anti-synchromzation
(Zhang and Zhu, 2008, Chiang et «l., 2008;
Sundarapandian, 2011g; Sundarapandian and
Sivaperumal, 2011b), the projective synchronization (Jia,
2007) and the generalized projective synchromzation
(Yan and Li, 2006, Li et al, 2007, Sarasu and
Sundarapandian, 2011). Complete Synchronization (CS) is
characterized by the equality of state variables evolving
m time while the Anti-Synchromization (AS) 1s
characterized by the disappearance of the sum of relevant
state variables evolving in time.

Projective Synchronization (PS) 1s characterized by
the fact the master and slave systems could be
synchronized up to a scaling factor whereas in
Generalized Projective Synchronization (GPS), the
responses of the synchromzed dynamical states
synchronize up to a constant scaling matrix «. It is
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easy to see that the complete synchronization and the
anti-synchronization are the special cases of the
generalized projective synchromization where the scaling
matrix ¢ = 1 and o = -1, respectively.

In hybrid synchronization of Chaotic Systems
(Sundarapandian, 2011h), one part of the systems (for
instance, the states) completely
synchronized while the other part (for instance, the even
numbered states) is anti-synchronized so that Complete
Synchromzation (CS) and Anti-Synchromization (AS)
co-exist n the Master-Slave Chaotic Systems. The
co-existence of CS and AS is very useful in secure
communication and chaotic encryption schemes.

odd-numbered 1s

In this study, researchers deploy the Adaptive
Control Method to derive new results for the hybrid
synchronization of identical Hyperchaotic Torenz Systems
(Gao et al., 2007), identical Hyperchaotic Chen Systems
(Li-Xm ef al, 2010) and non-identical Hyperchaotic
Lorenz and Chen Systems. The adaptive synchromzation
results for the hybrid synchronization of Hyperchaotic
Lorenz and Chen Systems are established by the
Lyapunov Stability Theory (Haln, 1967).

Systems description: The Hyperchaotic Lorenz System is
a new hyperchaotic system derived from the Lorenz
System by Gao et al. (2007). The Hyperchaotic Lorenz
System 1s described by the 4D dynamics:

(1

Where x; (=1, 2, 3, 4) are the states and o, B, p, r are
positive, constant parameters of the system. The system
(1) 18 hyperchaotic when the parameter values are chosen

as:
0=10,p=8/3, p=28andr=0.1

Figwe 1 shows the phase portrait of the
Hyperchaotic Lorenz System (1). The Hyperchaotic Chen
System is a new hyperchaoctic system derived from the
Chen System by Li-Xm ef al. (2010). The Hyperchaotic
Chen System 1s described by the 4D dynamics:

X, =a(x, —x,)
%, =4x, —10xx, +ox, +4x, )
é - bx,

X, =—dx,

X; =X
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Fig. 2: Phase portrait of the Hyperchaotic Chen System

Where, x, 1 =1, 2, 3, 4) are the states and a-d are
positive, constant parameters of the system. The system
(2) 18 hyperchaotic when the parameter values are taken
as:

a=35b=3c¢c=2landd=2

Figure 2 shows the phase

Hyperchaotic Chen System (2).

portrait of the

ADAPTIVE HYBRID SYNCHRONIZATION OF
IDENTICAL HYPERCHAOTIC LORENZ SYSTEMS

Theoretical results: Tn this research, researchers deploy
the Adaptive Control Method to derive new results for

the hybrid synchronization of identical Hyperchaotic
Lorenz Systems (Gao er al, 2007). Thus, the master
system 18 described by the Hyperchaotic Lorenz
dynamics:

X, =o(x, —x,)

Xy =PX; X, X, ~XX; (3)
X; = XX, —fx;

X, =IX,X;

Where x-x, are the states and «, P, p, r are unknown
parameters of the system. The slave system is described
by the controlled Hyperchaotic Lorenz dynamics:

Y1 :G(Y2 7Y1)+u1

Y2=PY Y Y VYt (4)
¥s =¥y, By, tu,
Vi STY.Y; T U,

Where y,-y, are the states and u ru,are the adaptive
controllers to be designed. The hybrid synchromzation
error 18 defined as:

€ =Y, "X, & =Y, TX; (5)
8, =¥; "X, & =Y, tX,

A simple calculation gives the error dynamics as:

e, =ale, —e —2x,)+ 1,
e, =ple, +2x)—e, —e, -
VY XX T, ©)
e, = Pe; tyy, XX, tu;
e, =1(y,y, T X,X,)+u,

Let us now define the adaptive functions u,(t)-u,(t)
as:
u,(t)=-5(e, —e, —2x,)— ke,
u,{)=—ple, +2x,)+e,+e +
V¥, + X%, ke, (7
u,(t)= Ge3 -yy, Txx, ke,
u, (1) = —1(y,y, + X,X,) —k,e,

Where spp and r are estimates of o, B, p and 1,
respectively and k (i = 1, 2, 3, 4) are positive constants.
Substituting Eq. 7 into Eq. 6, the error dynamics simplifies
to:

e, =(0—-G)e, —e —2x )—kpe,
e, :(9*62(61 +2x,) - kse, (8)
¢, =—(B-Ble, ~ ke,

&, =(r—t)y,y, +x,x,)-k,e,
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Let us now define the parameter estimation error as:

o ©)
p-

Substituting Eq. 9 nto Eq. 8, researchers obtain the
error dynamics as:

e =e (e, —e —2x)-kpg
e, =e,(e +2x) ke, 10)
e, = €4, —-k,e,

34 = er(yZYE + XZXB) _k4e4

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. Researchers consider the quadratic Lyapunov
function defined by:

V= (11)

1 2 2 2 2 2 2 2 2
E(e1 teiteitelteltelteltel)

Which is a positive definite function on R®
Researchers also note that:

(12)

Differentiating Eq. 11 along the trajectories of Eq. 10
and noting Eq. 12, researchers find that:

V=-kel —k,el —kel —k,el+
e [el(e2 —2x2)—6}+
(13)
e } e,(e +2x) - p}

e,{
e [64(y2y3 +X,X,0— rJ

In view of Eg. 13, the estimated parameters are
updated by the following law:

G=

e1(‘32 -

2
—e; +kge,

-2x,)+k.e,

b=

0 =e,(e +2x,)tke,

(14)
r= e, (y,y; + XX, )+ Kee,

Where, k;-k; are positive constants.
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Theorem 1: The identical Hyperchaotic Lorenz Systems
(3) and (4) with unknown parameters are globally and
exponentially hybrid-synchromzed by the adaptive
control law (Eq. 7) where the update law for the parameter
estimates 0, B, p, risgiven by Eq. 14andk (i=1,2, .., 8
are positive constants. The errors for parameter estimates
&, € ©,, ¢, decay to zero exponentially as t-e

Proof: This result is a simple consequence of the
Lyapunov Stability Theory. Researchers know that V as
defined in Eq. 11 is a positive definite function on R®.
Substituting Eq. 14 into Eq. 13, researchers obtaimn:

y _ 2 _ 2 _ 2 _ 2 _
V =-ke —k,e;, ke —k,e;

2 2 2 2
ke, —kye, —koeg —kge;

(15)

Which is a negative definite function on R*. Hence,
by the Lyapunov Stability Theory (Hahn, 1967), it follows
that e(t)-0Oas t-=fori1=1, 2, 3, 4 and ¢,-0, ¢;~0, ¢,~0,
e,~0 as t-ec, exponentially. This completes the proof.

Numerical results: For the numerical simulations, the
4th-order Runge-Kutta Method with time-step h = 107% is
used to solve the two systems of differential Eq. 3 and 4
with the adaptive non-linear controller (Eq. 7) and
update law of estimates (Eq. 14). Researchers take k, = 4
for1 =1, 2., 8 The parameters of the Hyperchaotic
Lorenz Systems are chosen so that the systems (3) and (4)
are hyperchaotic, 1.e.,

6=10,p=8/3, p=28andr=0.1

The initial values of the parameter estimates are
chosen as:

&(0)=5, B0)=3, p(0)=10 and F0) =6

The initial values of the master system (3) are chosen
as:
%(0) =2, %,(0) = -5, x,(0) =6, x,(0) = -12
The initial values of the slave system (4) are chosen
as:

vi(0)=7,540) =5, y;(0) =6, y,(0) =1

Figure 3 shows the hybrid synchromzation of the
Hyperchaotic Lorenz Systems (3) and (4). Figure 4 shows
the time-history of the hybrid synchronization errors.
Figure 5 shows the time-history of the parameter estimates
appr. Flgure 6 shows the time-lustory of the parameter
estimation errors e,, e, €, €,.
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Fig. 6: Time history of the parameter estimation errors e,
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ADAPTIVE HYBRID SYNCHRONIZATION OF
IDENTICAL HYPERCHAOTIC CHEN SYSTEMS

Theoretical results: In this research, researchers
deploy the Adaptive Control Method to derive new
results for the hybrid synchronization of identical
Hyperchaotic Chen System (1.i-Xin ef al., 2010). Thus, the
master system is described by the Hyperchaotic Chen
dynamics:

X =ax, —x) x, =4x, —10xx, + ox, + 4x, (16)

N .
X, =X; —bx,, x,=-dx

Where x,-x, are the states and a-d are unknown
parameters of the system. The slave system 1s described
by the controlled hyperchaotic chen dynamics:

y,—aly, —y,)tu, vy, =4y, —10yy, +cy, + 4y, + u,
¥ :y§ —by,+tu, v,

—dy, +u,

(17)

Where y,-y, are the states and u,-u, are the adaptive

controllers to be designed. The hybrid synchronization
error is defined as:

& =Y "X, & =Y, TX,

€ =Y, ~X, € =Y, TX,

(18)

A simple calculation gives the error dynamics as:

¢ =ale, —e —2xX,)+ 1,

e, = 4(e, +2x, )+ ce, +de, —
10y,y, —10x,x, + u, (19)

¢, =-be, +y —x+u,

e, =—de, +2x)+u,
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Let us define the adaptive functions u,(t)-u,(t) as:

u,(t)=—ale, —& —2x,) —ke,
u,(t)=—4(e, +2x,)—Ce, —de, +

10y,y, +10xx, —k,e, (20)
u,{ty=be, —yi +x; ~ ke,

u,(t) = &(el +2x,)—k,e,

Where 3-4 are estimates of a-d, respectively and k;,
(1=1, 2, 3, 4) are positive constants. Substituting Eq. 20
into Eq. 19, the error dynamics simplifies to:

é =(a—ae, —e —2x,)—ke,
e, =(c— 6)32 —k,e,

e, =—(b—be, —ke,

&, =—(d—d)e, + 2x,) ke,

(21)

Let us now define the parameter estimation error as:

@
I
H

w

(22)

D..> CJ">

b -
=d-

o]

o

Substituting F. 22 into Eq. 21, researchers obtain the
error dynamics as:

e —e,(e,—e —2x,)-ke
e, —ee, ke, (23)
e, =—ee, —ke,

e, =—e,(e +2x,)-k,e,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov Approach is
used. Researchers consider the quadratic Lyapunov
function defined by:

1
Vza(eere;+e§+ei+ei+eé+ei+ei) (24)

which is a positive definite function on R®. Researchers
also note that:

(25)

Differentiating Eq. 24 along the trajectories of Eq. 23
and noting Eq. 25, researchers find that:
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V——klef—ke ke kez+
e [el(ez—e -2x,) - a}
- 26
{e } —6}— (26)
{ e,(e +2x,)— d}

In view of Eq. 26, the estimated parameters are
updated by the following law:

Q:el(ez -2x,)tkee b:—e§+kﬁeb

Sa’

(27)
=elt+ke, d: —e,(e +2x )t ke,
Where k;-k; are positive constants.

Theorem 2: The identical Hyperchaotic Chen Systems
(16) and (17) with unknown parameters are globally and
exponentially hybrid-synchromzed by the adaptive
control law (20) where the update law for the
parameter estumates a-d 13 given by Eq 27 and
k1=1, 2,.., 8 are positive constants. The errors for
parameter estimates e,-e; decay to zero exponentially as

Lo

Proof: This result 15 a simple consequence of the
Lyapunov Stability Theory. Researchers know that V as
defined in Eq. 24 is a positive definite function on R®.
Substituting Eq. 27 into Eq. 26, researchers obtaimn:

T 2 2 2 2
V=-ke -k, -k -k,

2 2 2 2
ke, —kye) —koep —kye;

(28)

which is a negative definite function on R*. Hence by the
Lyapunov Stability Theory (Hahn, 1967), it follows that
e(t)0asT-=fori=1,2 3, 4ande~0, e,~0 e~0 e,~0as
t=o0, exponentially. This completes the proof.

Numerical results: For the numerical simulations, the
4th-order Runge-Kutta Method with time-steph = 107" is
used to solve the two systems of differential Eq. 16 and 17
with the adaptive nonlinear controller (Eq. 20) and update
law of estimates (Eq. 27).

Researchers takel; = 4 fori=1, 2,..., 8. The parameters
of the Hyperchaotic Chen Systems are chosen so that the
systems (16) and (17) are hyperchactic, i.e.,

a=35b=3,¢=21,d=2

The imtial values of the parameter estumates are
chosen as:
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A0)=7, b(0) =4, &0)=1, d(0)=20

The initial values of the master system (16) are
chosen as:

X,(0)=-6,x,(0) =17, x,(0) = 23, x,(0) = -8

The mitial values of the slave system (17) are chosen

das:
yi(0) =12, y,(0) = 17, y,(0) = -6, x,(0) = -22

Figure 7 shows the hybrid synchronization of the
Hyperchaotic Chen Systems (16) and (17). Figure & shows
the time-history of the hybrid synchronization errors.
Figure 9 shows the time-history of the parameter estimates
a-d . Figure 10 shows the time-history of the parameter
estimation errors e-e,.

ADAPTIVE HYBRID SYNCHRONIZATION OF
HYPERCHAOTIC LORENZ AND HYPERCHAOTIC
CHEN SYSTEMS

Theoretical results: Tn this study, researchers derive
results for the adaptive hybrid synchronization of
non-identical Hyperchaotic Systems viz. Hyperchaotic
Lorenz System (Gao et al., 2007) and Chen System
(Li-Xin et ad., 2010). Thus, the master system is described
by the Hyperchaotic Lorenz dynamics:

-X

X =0(x, —X,), X, =PX, —X, 4 T X R,

i ) (29)
Xy = XX, — By, Xy =1XX,
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Where x,-x, are the states and o, B, p, r are unknown
parameters of the system. The slave system 1s described
by the controlled hyperchaotic chen dynamics:

yi=aly, —y)+u,

y, =4y, —10yy,teoy, +t 4y, tu,
Yi =y, —by; +u,

¥, = ~dy, +u,

(30)

Where y,-y, are the states, a-d are unknown
parameters of the system and u,-u, are the adaptive
controllers to be designed. The hybrid synchronization
error is defined as:

& =Y —X, 8 =Y, TX,

€ =Yy X6 =Y, TX,

(31)

A simple calculation gives the error dynamics as:

e =aly, —y,) -o(x, —x)+u,
e, =4y, ~10y,y, +oy, + 4y, +

px, —X, —X, XX, T 1, (32)
e, :yé -by, —xx, +Bx, +u,

e, =—dy, +1%,X, + 1,
Let us define the adaptive functions u,(t)-u,(t) as:

w(t)=-aly, -y, )+a(x, -x,)-ke,
u,(t)= -4y, +10y,y, 76Y2 —dy, -

Px, + %, + %, + X%, — ke, (333
u,{t) = 7Y§ +by, + xx, —Bx, —ke,

u, (t) = dy, —1x,%; ke,

Where &,p8,p14a-d are estimates of 0, B, p, 1, a-d,
respectively and k; (1 = 1, 2, 3, 4) are positive constants.
Substituting Eq. 33 into Eq. 32, the error dynamics
simplifies to:

¢ =(a-ay, ~y,)—
(o-8ix, —x) ke,
e, =(c—C)y, +{p—pPix, — ke,
& =—(b Dby, + (B-Px, —kee,
e, = —(d—d)y, +(r—Px,x, —k,e,

(34)

Let us now define the parameter estunation error as:

7 (3): 254-264, 2012

(35)
e,=a-3G, e
e, =p—p, e =r—t

Substituting Eq. 35 into Eq. 34, researchers obtam the
error dynamics as:

e =e.(y;, —y)—e.(x, —x) - ke

e, =ey, tex — ke (36)
8, = —8,¥; T X, —k.e,

&, = —e,y, texx, ~k.e,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov Approach is
used. Researchers consider the quadratic Lyapunov
function defined by:

1lel+e+el+el+el+e+ (37)
S 2,2, a2, a0
Zl e te te,tegte, te;
Which is a positive definite function on R"
Researchers also note that:

Differentiating Eq. 37 along the trajectories of Eq. 36
and noting Eq. 38, we find that:

ro_ 2 2 2 2
V =-ke —k,e;-ke; —ke +

ea[el(y2 —yl)—é]+ e, [—ejy3 -b |+

G |:GZYZ B &}”L Gy {7643/1 o a} + (39)

ec[*el(xz fxl)fc?}re{ejxj 7[;3 +

ep[ele —c}+ e, [ep{zx3 —rJ

In view of Eq. 39, the estimated parameters are
updated by the following law:

a= ey, —yitke, b=—ey,+kee,

c=e,y,tke , d=-ey +ke,

(40)
o= (x, -x)+kee,, é =eX; + ke

e, r=ex,x, +k,e

p=ex +k, »

261
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Where, k; (i = 5,..., 12) are positive constants.

Theorem 3: The non-identical hyperchaotic Lorenz
System (29) and hyperchaotic Chen System (30) with
unknown parameters are globally and exponentially
hybrid-synchronized by the adaptive control law (33)
where the update law for the parameter estimates o, 3, p,
r,a-d s givenby Eq. 40 and k (1 =1, 2,..., 12) are positive
constants. The errors for parameter estimates e,, e, e, e,
e,-¢, decay to zero exponentially as t-oo.

Proof: This result 15 a simple comsequence of the
Lyapunov Stability Theory. We know that V as defined in
Eq. 37 is a positive definite function on R'%. Substituting
Eq. 40 mto Eq. 39, researcherse obtain:

o 2 2 H H 2 2
V=-ke -k ke ke —ke, ke, -

2 2 2 2 2 2
kTec _kaed _kgec _kweﬁ _kllep _k1zer

(41)

Which is a negative definite function on R". Hence
by the Lyapunov Stability Theory (Hahn, 1967), it follows
that e,(t)-0 as t-0fori =1, 2, 3, 4 and all the parameter
» ¢ tend to zero
exponentially with time. This completes the proof.

estimation errors e,¢, €, ©; ¢

Numerical results: For the numerical simulations, the
4th-crder Runge-Kutta Method with time-step h = 107" is
used to solve the two systems of differential Eq. 29 and 30
with the adaptive non-linear controller (Eq. 33) and update
law of estimates (Eq. 40). Researchers take ks = 4 for1=1,
2,..., 12. The parameters of the Hyperchaotic Lorenz and
Hyperchaotic Chen Systems are chosen so that the
systems are hyperchaotic, i.e.,

0=10,p=873, p,r=01
a=35,b=30=21,d=2

The initial values of the parameter estimates are
chosen as:

4(0)=1, b(0) =8, &0)=10, d(0)=7
&0)=5, PO)=14, p(0I=3, T(0)=11

The initial values of the master system (16) are
chosen as:

X,(0) = 2, x,(0) = -5, x4(0) = 4, %,(0) = 1

The initial values of the slave system (17) are chosen
as:

¥i(0) =8, y:(0) = -6, v{0) = -3, v,(0) = -4
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Fig. 14: a, b) Time history of the parameter estimation
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Figure 11 shows the hybrid synchronization of the
Hyperchaotic Lorenz and Hyperchaotic Chen Systems
(16) and (17). Figure 12 shows the time-history of the
hybrid synchronization errors. Figure 13 shows the
time-history of the parameter estimates a-d, 5,0, 4,7 -
Figure 14 shows the time-lustory of the parameter
estimation errors e-¢,, ¢, e ¢, and e,.

CONCLUSION

In this study, researchers have deployed Adaptive
Control Method for achieving adaptive hybrid
synchronization of the identical Hyperchaotic Lorenz
Systems, the identical Hyperchaotic Chen Systems and
non-identical Hyperchaotic Lorenz and Hyperchaotic
Chen Systems when the parameters of the systems are
unknown. The adaptive hybrid synchromization results
derived have been proved using the Lyapunov Stability
Theory. Since, the Lyapunov exponents are not required
for these calculations, the proposed Adaptive Control
Methed 18 very effective and convenient for achieving
hybrid synclromzation of the hyperchaotic systems
addressed n this study. Numerical simulations are shown
the of the hybnd
synchromization results for the hyperchaotic systems
discussed in this study.

to demonstrate effectiveness
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