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Abstract: This biomechanical approach of the study is to investigate the effects of peripheral layer viscosity
on physiological characteristics of blood flow through stenosed artery using two-phase model are nvestigated.
The hemodynamics behavior of the blood flow 1s mfluenced by the presence of the arterial stenosis. Newtonian
and Herschel-Bulkley Fluid Models are considered in the peripheral layer and central layer region, respectively.
The goverming equations have been solved with help of boundary conditions and results are displayed
graphically for different flow characteristics. It is found that the resistance to flow decreases as stenosis shape

parameter mcreases and mncreases as stenosis length, stenosis size, peripheral layer viscosity increases.
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INTRODUCTION

There are many evidences that vascular fluid
dynamics plays a major role m the development and
progression of arterial diseases, one of the most
widespread diseases in lungs. Arteries are narrowed by
the development of stenosis. Stenosis denotes the
narrowing of the artery due to the development of
arteriosclerosis plaques. The presence of stenosis can
lead to serious circulatory disorders. There is strong
evidence that hydrodynamic factors such as resistance to
flow, wall shear stress and apparent viscosity may play a
vital role in the development and the progression of
arterial stenosis. Many researchers (Young, 1968, Caro,
1981; Shukla et al, 1980) feel that the hydrodynamic
factors may be helpful i the diagnosis, treatment and
fundamental understanding of many disorders (Clark,
1976) has made experimental studies with different models
of stenosis.

However, the models do not account for the size
effects due to the suspension of blood cells in plasma. It
should be noted that in the case of an advanced stenosis,
the size of the artery reduces considerably. Tn such a case,
a Newtoman fluid cannot represent blood because the
size effects influence the flow characteristics significantly.
With the advent of the fact that rheclogic properties and
the flow behaviour of blood are of immense importance in
the fundamental study of arterial stenosis.

Shukla et al (1980) have studied the effect of
stenosis on the resistance to flow through artery by
considering the behaviour of blood as a power-law fluid
and a Casson fluid. Murata (1998) has proposed a
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sedimentation model i which he considered constant
values of hematocrit and Newtonian viscosity in the
circular core region, containing red cell aggregates. A
theoretical model for sedimentation of red cell aggregates
in narrow horizontal tubes have proposed by Secomb and
El-Kareh (1994) in which they modelled the core region as
a solid cylinder moving inside the tube.

A little attention (Chaturam and Ponnalagarsamy,
1986, Lee, 1990, Misra et ai., 1993; Tandon and Rana,
1995) has been made to study the effect of stenosis
through tubes with double constriction on physiological
fluid flows. The present study describes two fluids model
for blood flow through an artery. In this study, the effects
of peripheral layer wiscosity on physiological
characteristics of blood through the artery with mild
stenosis have been studied. To study the mfluence of
stenosis shape parameter (m) through an artery in blood
flow a suitable geometry 1s considered such that the axial
shape of the stenosis can be changed just by varying a
parameter. In this model, the suspension of erythrocytes
in the core region 1s assumed to be non-Newtonian
fluid and peripheral plasma layer is treated as Newtonian

fluad.
MATERIALS AND METHODS

Analysis of the problem: Consider the axisymmetric flow
of blood in a umiform circular tube with an axially
non-symmetric but radially symmetric mild stenosis. The
geometry of the stenosis as shown mn Fig. 1 18 assumed to
be mamfested as:
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Fig. 1. Antherosclerosis (cut section of artery)
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Where:
R(zyand R, = The radivs of the capillary with and
without stenosis, respectively
L, = The stenosis length
d = Indicates its location
mz2 = A parameter determimng the stenosis

shape and 1s referred to as
parameter

shape

Axially, symmetric stenosis occurs whenm = 2 and a
parameter A is given by:
Al 5 mmi’(m—l)
R,LY (m-1)

Where, & denotes the maximum height of stenosis at
z= dLy/m" " §/R,<<1. The function R,(z) representing
the shape of the central layer assumed as:
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- aq, otherwise
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Where, 8, denotes the maximum bulging of interface
at z = d+L,/m"™" due to the presence of stenosis and & is
the ratio of the central core radius to the tube radius in the
unobstructed region (Fig. 2).

Conservation equation and boundary condition: The
equation of motion for laminar and mcompressible,
steady, fully developed, one-dimensional flow of blood
whose viscosity varies along the radial direction in a
capillary 1s:

7 (2): 159-164, 2012

r
4 Peripheral layer
L (Newtonian fluid)

Central layer
(Her‘schel—Bulkley fluid)
- i a4
RN N5 7 /

or, [RD FR@ | / [\\ >z
) =

Fig. 2: Geometry of stenosed artery with peripheral layer

dz ) ror or

where (z, 1) are (axial, radial) co-ordinates with z measured
along the axis and r measured normal to the axis of the
capillary. Following boundary conditions are introduced
to solve the Eq. 3:

d LU

._//
i

(3)

du
—=0, atr=0, u=0, atr=R(z)
or

P=PF, atz=0, P=P,, atz=L
T isfinite, atr=20

To see the effect of peripheral layer viscosity on the
stenosis shape parameter, resistance to flow, shear stress
and apparent viscosity, researchers consider the viscosity
function as follows:

0<r<R,(z)
R (z)=r=R{z)

H=Hy,
M= My,

(5)
where p, and p, are the viscosities of the central and the
peripheral layers, respectively.

Case 2: Herschel-Bulkley Fluid Model: The stress-strain
relation of Herschel-Bulkley fluid is given as:

f(ty= (—(i—dlrl} :i(t—tn)n, TET,

f(t)—((;ll}—o, T,

T_[dpr], TU_[dPRc]
dz 2 dz 2
Where:

Tl Herschel-Bulkley viscosity coefficient
T, = Yieldstress
Shear stress

(6)

T =
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R. = The radius of the plug-flow region
The axial velocity along the z direction
The flow behavior mdex

The relation correspond to the vanishing of the
velocity gradients in regions in which the shear stress T
15 less than the yield stress T,, thus implies a plug flow
wherever T<T, when the shear rates in the fluid are very
high,t>1,, the power-law fluid behavior is indicated.

Solution of the problem: The flow flux Q at any cross
section 1s defined as:

Rz}

Q= j 2mrudu =

Rz}

2
jT[I'

(4

(7

On using Eq. 3, 6 and boundary condition (Eq. 4),
researchers get:

1in
Q= [ : ] [r—R "]
2u
Ry (z£) 4
Q- jmz[du]dr_[m} ®)
i dr ST
Riz)
—du nP
Q= | m’ (—}dl“— —I[R'(2)-R{(2)]
’ le;l) dI' SMZ 1
value of f(t) from Eq. 1 in Eq. 7,
o p R(sﬁ)
Q= 5(2_} 1 fiy) )
B
n
Where:
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Using Eq. &, researchers have:
P_[—d—PJ_ C B LS S T (10)
dz) Rl nf(y) n
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to determine A, Researchers integrate Hq. 11 for the
pressure P, and P, are the pressure at z = 0 and z = L,
respectively where T is the length of the tube:

dz
(R(z)/R ™™y

S —

The resistance to flow 1s given by the coefficient A is
defined as follows:

A:(PL7PU) (12)
Q
1 n
" Qi+ ) ) (13)
Rlﬂ+3n o
_ j"-dZ d*f“ dz ]f dz
. (fn) 1+3n 3 : (fn)n
d {%} wmy
_ el 4 _ b
2(1-¥) —m(l—)ﬁ) +
f, = | 1
%[(1 -3, - [(_1)%) _1])
(2+)3+-)
n n
where;

=

RE
RU
When there is no stenosis in artery then R = R, the
resistance to flow:

o (m(nﬁ) "L
N Rlﬂ+3nL n (fu)n

by (14

From Eq. 12 and 13, the ratio of (A/AN ) is given as:

d+Lg

dz

e, ]
1 (R(z)/R )™ (y)

L L

(15)

The apparent viscosity (p,/p) 1s defined as follow:

uapp—{ ! } D)

(R(z)/R,
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7R1(Z) . —du _ ﬂPRf(Z)
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The total flux, Q 1s: Q = Q,+Q, and Q 1s written as:

Q=2 R - 1-mRi(2] (%)
B,

Where:

From Eq. 18, the pressure gradient is written as
follows:

P=(8u,Q/ 1R (2) - 1-WR{(2)] (19)

To determine A, researcher integrate Eq. 19 for the
pressure P, and P, which are the pressures at z = 0 and
z = L, respectively where L is the length of the tube. The
resistance to flow is defined as follows:

")

Let A, is the resistance to flow for Newtonian fluid
with no stenosis then:

A= (20)

1]

Ay = BuL /TR 21)
From Eq. 20 and 21, researcher have:
4
po= o oq Lo 1AE W) ey g Ry

-~ R,(Z)
(1 M)(iRU D

Equation 20 can be rewritten as:

Q=(nPR*/8u_)

app

where, ., 1s the apparent total tube flow viscosity given
by:
I 1

(23)
[1-{1-wa'](R(z)/ R,

“‘app =

The shearing stress at the maximum height of the
stenosis can be written as:

j 16 - [%Q(
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1- —
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R
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1- —
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0

*]

(4] et
(24)

1]
and the shear stress for Newtoman fluid with no stenosis

(88

Now the ratio of shearing stresses at the wall can be

1$ as:
ApQ

(25)
nR;

written as:
3
T:{T_sj: e [lij 26)
Ty |:1—(1—}.L)O(. } R,
RESULTS AND DISCUSSION

The model shown before contributes to the fact that
blood possesses an mbuilt mechanics of reducing drag
due to the presence of peripheral layer. Therefore,
incarporation of a cell free layer of plasma and a central
core of thickly concentrated suspension of cells with
higher viscosity (p,>p,) describes the simplest
representation of blood m small diameter vessels. The
results obtained in this study consist of the expression for
resistance to flow (A) in Eq. 22, expression for apparent
viscosity () in Eq. 23 and expression for shear stress in
Eq. 26 and displayed graphically. Fig. 3 and 4 shows the
variation of resistance to flow with stenosis size, stenosis
length, stenosis shape parameter and peripheral layer
viscosity. It 1s observed from Fig. 3-6 that the resistance
to flow decreases as stenosis shape parameter mcreases
while it increases as stenosis size and peripheral layer
viscosity mcreases. A slight change in the stenosis size
(radius of the artery) brings about a noticeable change in
the resistance to flow (Lerche, 2009). It is found by
Chakravarty and Mandal (2001) that the peripheral layer
viscosity of blood in diabetic patients is higher than in
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Fig. 3: Variation of resistance to flow with stenosis size
for different values of stenosis shape parameter
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Fig. 4: Vanation of resistance to flow with stenosis length
for different values of stenosis ize
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Fig. 5. Variation of wall shear stress with stenosis size for
different values of stenosis length
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Fig. 6: Vanation of wall shear stress with stenosis length
for different values of stenosis shape parameter

non-diabetic patients, resulting higher resistance to blood
flow. Thus, diabetic patients with ligher peripheral layer
viscosity are more prone to high blood pressure.
Therefore, the resistance to blood flow in case of diabetic
patients may be reduced by reducing viscosity of the
plasma.

This can be done by injecting saline water to such
patients the process is called dilution in medical terms.
Figure 5 and 6 consist the results for wall shear stress for
different values of stenosis size and stenosis length,
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Fig. 7. Variation of apparent viscosity with stenosis size
different values of peripheral layer viscosity
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Fig. 8 Variation of apparent viscosity with stenosis
length for values of peripheral layer viscosity

stenosis shape parameter and peripheral layer viscosity.
It 18 observed from Fig. 5 and 6 that the wall shear stress
decreases as stenosis shape parameter increases but in
the case of increasing stenosis size, stenosis length and
peripheral layer viscosity wall shear stress 1s increasing.
Figure 7 and 8 highlighted the results for apparent
viscosity with the variation of stenosis size, stenosis
length, stenosis shape parameter and peripheral layer
viscosity. Figure 7 and 8 shows that apparent viscosity
increases as stenosis size, stenosis length and peripheral
layer viscosity increases. It has also been seen from the
graphs that the apparent viscosity decreases as shape
parameter increases. These results are ualitative
agreement with the observation of Lerche (2009) and
Sankar and Hemalatha (2006). In normal human artery,
apparent viscosity is found to decrease with the artery
radius and is called Fahraeus-Lindquist effect. One may
conclude that peripheral layer viscosity plays an
important role in lowering the resistance to flow and wall
shear stress along the increasing stenosis thickness. In
medical practice, several medicines are prescribed to
lower the plasma viscosity and by mjecting saline water
intra-venously.
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CONCLUSION

The effect of peripheral layer viscosity on the blood
flow 1n the presence of mild stenosis in the lumen of the
artery has been investigated by using Power Law Fluid
Model. It has concluded that the resistance to flow,
apparent viscosity and wall shear stress have been found
to mcreases with viscosity of peripheral layer but the
same are not found to increase as the shape of stenosis
increases. The model predicts increase in wall shear stress
with peripheral layer viscosity. Predicted trends are found
to exist mn artery and hence, validate the model. More
experimental results are required for further development
from clinical point of view.
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