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Abstract: In tlus study, researchers apply adaptive control method to derive new results for the anti-
synchromzation of identical Tigan Systems (2008), identical 1.1 Systems (2009) and non-identical Tigan and L1
Systems. In adaptive anti-synchronization of identical chaotic systems, the parameters of the master and slave
systems are unknown and researchers devise feedback control law using the estimates of the system
parameters. In adaptive anti-synchronization of non-identical chaotic systems, the parameters of the master
system are known but the parameters of the slave system are unknown and researchers devise feedback control
law using the estimates of the parameters of the slave system. The adaptive synchronization results derived
mn this study for the uncertamn Tigan and L1 Systems are established using Lyapunov Stability Theory. Since,
the Lyapunov exponents are not required for these calculations, the adaptive control method 15 very effective
and convenient to achieve anti-synchronization of identical and non-1dentical Tigan and L1 Systems. Numerical
simulations are shown to demonstrate the effectiveness of the adaptive anti-synchromzation schemes for the

uncertain chaotic systems addressed in this study.
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INTRODUCTION

Chaotic systems are non-linear dynamical systems
that are lighly sensitive to wutial conditions. This
sensitivity 15 popularly known as the butterfly effect
(Alligood et al., 1997). Smce, the pioneering research by
Pecora and Carroll (1990), chaos synchronization and
anti-synchromzation problems have been studied
extensively and intensively in the literature (Pecora and
Carroll, 1990, Lakshmanan and Murali, 1996, Han et al.,
1995; Blasius ef al., 1999, Cuomo and Oppenheim, 1993;
Kocarev and Parlitz 1995, Tao, 1999, Ott et al., 1990,
Ho and Hung, 2002; Huang et al, 2004; Chen, 2005;
Sundarapandian and Karthikeyan, 2011a, b, Lu ef al,
2004; Chen and Lu, 2002; Park and Kwon, 2003). Chaos
theory has been applied to a variety of fields such as
physical systems (Lakshmanan and Murali, 1996),
chemical systems (Han ef al., 1995), ecological system
(Blasius et al., 1999), secure communications (Cuomo and
Oppenheimn, 1993; Kocarev and Parlitz, 1995; Tao, 1999),
ete. In the last two decades, various schemes have been
successively applied for chaos synchromzation such as
PC Method (Pecora and Carroll, 1990), OGY Method
(Ott et al,, 1990), active control method (Ho and Hung,
2002; Huang ef al., 2004; Chen, 2005; Sundarapandian and
Karthikeyan, 2011a, b), adaptive control method (Lu et af.,

2004; Chen and Lu, 2002), time-delay feedback method
(Park and Kwon, 2003), backstepping design method
(Yu and Zhang, 2006), sampled-data feedback
synchromzation method (Zhao and Lu, 2008) and
sliding mode control method (Komshi et al, 1998,
Sundarapandian and Sivaperumal, 2011a, b), etc.

Inmost of the chaos synchronization approaches, the
master-slave or drive-response formalism 1s used. If a
particular chaotic system is called the master or drive
system and another chaotic system is called the Slave or
Response System then the goal of anti-synchromzation 1s
to use the output of the master system to control the
slave system so that, the states of the slave system have
the same amplitude but opposite signs as the states of the
master system asymptotically. In this study, researchers
discuss the anti-synchronization of identical hyperchaotic
Tigan Systems (Tigan and Opris, 2008), identical L1
Systems (L1 ef al., 2009) and non-identical Tigan and L1
Systems. The synchromzation results are established
using Lyapunov Stability Theory.

In adaptive synchromzation of identical chaotic
systems, the parameters of the master and slave systems
are unknown and researchers devise feedback control
laws using the estimates of the system parameters. In
adaptive synchronization of non-identical chaotic
systems, the parameters of the master system are known
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but the parameters of the slave system are unknown and
researchers devise feedback control laws using the
estimates of the parameters of the slave system.

ADAPTIVE ANTI-SYNCHRONIZATION OF
IDENTICAL TIGAN CHAOTIC SYSTEMS

Theoratical results: In this study, researchers discuss
the adaptive synchronization of identical Tigan Systems
(Tigan and Opris, 2008) when the parameters of the master
and slave systems are unknown. As the master system,
researchers consider the Tigan dynamics described by:

X, =alx, —x,)
(1)

Ky =(c—a)x, —axx,

X, =—bx; + 1%,

where, x,-x, are the state variables and a-c¢ are unknown
parameters of the system. As the system,
researchers consider the controlled Tigan dynamics

described by:

slave

¥i=aly, -y, )+,
y,=lc—a)y, —ay\y, tu,
Vs :7bY3 tyy, tu,

(2

where, y,-y, are the state variables and u,-u, are the
non-linear controls to be designed. The Tigan Systems
(Eq. 1 and 2) are chaotic when the parameter values are
chosen as:
a=21, b=0.6andc=230
The state orbits of the Tigan System are shown in
Fig. 1. The anti-synchromzation error 1s defined as:

e =y tx, (i=l2,3) 3
A simple calculation gives the error dynamics as:
¢ =ale, —e )ty
¢, =(c—aje —ay,y; —axx; +u, 4

é,=—be, +tyy, txx, +tu,

Let us now define the adaptive functions u,(t)-u,(t)

as:
u,(y=-ale, —e)—ke

u,(t) =—(C —ae +ayy, +ay,y, —k,e,
u, () =-be, —yy, —xx, —ke,

)

where, 4-¢ are estimates of a-c, respectively and
k, (1=1-3) are positive constants. Substituting Eq. 5 mto
4, the error dynamics simplifies to:
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Fig. 1: State orbits of the Tigan Chaotic System

é =(a—aye, —¢) ke,
()]

¢, =(c—&e, —(a—axe +yy, +xx,0-k,e,

é, = —(b-Dble, ke,

Let us now define the parameter estimation error as:

.=a—4a, e,=b-b, e,=c-¢ )
Substituting Eq. 7 into 6, researchers obtain the error
dynamics as:

& —e, e, —e)-ke
(8)

e, —ee —e(e +yy, +Xx,)-k,e,

&; =g, — ke

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. Researchers consider the quadratic Lyapunov

function defined by:

(%)

1
V:E(ef+e§+e§+ej+e§+ei)

which is a positive definite function on R®. There is also
note that:
Ao b H (10)

Differentiating Eq. 9 along the trajectories of Eq. 8
and noting Eq. 10, researchers find that:

V= 71{1612 7kze§ - kzei +e, |:7e12 —e{yY; + XX ) — é:| +
e, [ﬂai Jtnj}reg[elez 76J
(11)

In view of Eq. 11, the estimated parameters are
updated by the following law:
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(12)

where, k,-k, are positive constants. Substituting Eq. 12
into 11, researchers obtain:

Ve ke kel kel kel ke ke (3

which is a negative definite function on R®. Thus by
Lyapunov Stability Theory (Hahn, 1967), it 1s immediate
that the anti-synchronization error & (i = 1-3) and the
parameter estimation error decay to zero
exponentially with time. Hence, researchers have proved
the following result.

€€,

Theorem 1: The identical uncertain Tigan Systems (Eq. 1
and 2) are globally and exponentially anti-synchronized
by the adaptive control law (Eq. 5) where the update
law for the parameter estimates 1s given by Eq. 12 and
k (i=1, .., 6)are positive constants.

Numerical results: For the numerical simulations, the
4th-order Runge-Kutta Method with time-step h =107" is
used to solve the two systems of differential Eq. 1 and
2 with the adaptive non-linear controller (Eq. 5).
Researchers take:
k=2 for i=1,2,..,6

The parameters of the Tigan Systems are chosen so

that, the systems are chactic, i.e. :

a=21, b=06 and ¢=30

The wutial values of the parameter estimates are taken
as:

a0)=1, b(0y=2 and &0)=5

The imtial values of the master system (Eq. 1) are
chosen as:
x,(0)=21, x,(0)=15, x,(0)=30
The initial values of the slave system (Eq. 2) are
chosen as:

y1(0):127 yz(O):ZO, ¥; (0)=10

Figure 2 shows anti-synchronization of the Tigan
Systems (Eq. 1 and 2). Figure 3 shows that the estimated
values of the parameters viz., i-¢ converge to the system
parameters a = 2.1, b = 0.6 and ¢ = 30, respectively.
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Fig. 2: Anti-synchromzation of identical Tigan Systems
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Fig. 3: Parameter estimates a(t) - ¢(t)

ADAPTIVE ANTI-SYNCHRONIZATION OF
IDENTICAL LI CHAOTIC SYSTEMS

Theoretical results: In this study, researchers discuss
the adaptive synchronization of identical Ii Systems
(Li et al., 2009) when the parameters of the master and
slave systems are unknown. As the master system,
researchers consider the L1 dynamics described by:

X =00, — X)), X, =X,X, ~ X, X,=P-xx, —vx, (1D

where, x,-x, are the state variables and «, p and y are
unknown parameters of the system. As the slave

systemn, researchers consider the controlled Li dynamics
described by:
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Fig. 4: State orbits of the L1 Chaotic System

Vi=oly, ¥ty
Vi=vi¥s— Y. T, (15)
Vs 287Y1Y2 —Yy; tu,

where, y,-v, are the state variables and u,-u, are the non-
linear controls to be designed. The L.i Systems (Eq. 1 and
2) are chaotic when the parameter values are chosen as:

o=35, PB=16 and y=1
The state orbits of the L1 system are shown in Fig. 4.
The anti-synchromzation error i1s defined as:

e =y tx, (i=1273) (16)

A simple calculation gives the error dynamics as:

& =ale, —e i+,
(17)

8, =0, T Yy, T XX, tu,

& = Ve, VY, XX, 2B+ u,

Let us now define the adaptive functions w,(t)-us(t)
as:
u,(t)=—dle, —e)—ke,
u,(t=e, ~yy, —x%; ~kpe, (18)

u () =Fe, + vy, +x,x, ~2B-kee,

where, &, p and ¥ are estimates of @, P and v,
respectively and k, (i = 1, 2, 3) are positive constants.
Substituting Eq. 18 into 17, the error dynamics simplifies
to:

& =(a-0)e,—e)-ke

8, =—k,e, (19)

&, =—(y -7, + 2B~ Pr—kee,
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Let us now define the parameter estimation error as:

A P (20)

Substituting Eq. 20 into 19, 1t 13 obtamed the error
dynamics as:

¢ =e,le; —e) ke

é,=-ke, (21)

e,=—e.e, + 2 —kje,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. Researchers consider the quadratic Lyapunov
function defined by:

2

: (22)

v

1
5(ef+e§+e§+ei+e +ei)

which is a positive definite function on R®. It is also noted
that:

Sy=—0 &=—P &,=—F (23)

Differentiating Eq. 22 along the trajectories of Eq. 21
and noting Eq. 23, researchers find that:

V =-kef —k.e —k.e -#—em[el(e2 —el)—(ﬂ-k

9]

In view of Eq. 11, the estimated parameters are
updated by the following law:

2

€ [263 - B} te, [fei =

& =g le, —e)tke,
é =2e, T ke (25)

§=—eftkge,

where, k,-k, are positive constants. Substituting Eq. 12
into 11, researchers obtain:

V =-ke ~k,e} kel kel ~kpe kel (26)

which is a negative definite function on R°. Thus by
Lyapunov Stability Theory (Hahn, 1967), it is immediate
that the anti-synchronization error ¢ (1 = 1-3) and the
parameter estimation error e,, ¢; and e, decay to zero
exponentially with time. Hence, there have proved the
following result.
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Theorem 2: The identical uncertain I.i Systems Eq. 14 and
15 are globally and exponentially anti-synchronized by the
adaptive control law (Eq. 18) where the update law for the
parameter estimates 1s given by (Eq. 25) andk (1=1, ., 6)
are positive constants.

Numerical results: For the numerical simulations, the
4th-crder Runge-Kutta Method with time-step h =107° is
used to solve the two systems of differential Eqg. 14 and 15
with the adaptive non-linear controller (Eq. 18).
Researchers takek =2 for1=1, 2, ..., 6. The parameters of
the Li Systems are chosen so that, the systems are
chaotic, i.e, & =5, p =16 and vy = 1. The initial values of
the parameter estimates are taken as:

GO =4 ROY=5, FOH=12

20F7= ¥z .
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g
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Fig. 5. Anti-synchronization of identical Li Systems
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Fig. 6: Parameter estimates &it). Bt), #(t)

The initial values of the master system (Eq. 14) are
chosen as:
x,(0)=14, x,(0)=8, x,(0)=19

The initial values of the slave system (Eq. 15) are
chosen as:
y, (0)=25, y,(0)=10, y,(0)=32

Figuwre 5 shows anti-synchromization of the Li
Systems (Eq. 14 and 15). Figure 6 shows that the
estimated values of the parameters viz., &, p and ¥
converge to the system parameters ¢ = 5, p = 16 and
v =1, respectively.

ADAPTIVE ANTI-SYNCHRONIZATION OF
TIGAN AND LI CHAOTIC SYSTEMS

Theoretical results: In this study, researchers discuss
the adaptive anti-synchronization of non-identical Tigan
and Li Systems. Here, there is considerd the Tigan System
(Tigan and Opris, 2008) as the master system whose
parameters are known. We consider the controlled Ti
System (L1 et al, 2009) as the slave system whose
parameters are unknown. As the master system, we
consider the Tigan dynamics described by:

X =alx, — %) X, =(c—a)x, —ax,X;, X; = bxX; T X,X,
(27)
where, x,-x, are the state variables and a-c are unknown
parameters of the system. As the slave system, we
consider the controlled Li dynamics described by:

Y=oy, —y )ty
V=YY oY, t, (28)

}-732673/1}72 —Y; T,

where, y-y, are the state variables, «, P and v are
unknown parameters of the system and u-u, are the

non-lmear controllers to be designed. The anti-
synchronization error 1s defined as:
e=y +x, 1=123) (29)

A simple calculation gives the error dynamics as:

¢ =0y, ~y)talx, —x)+uy
€, =-y,t{c—a)x tyy, axx, tu, (30)

& =P-vy, ~bx, — vy, XX, Huy

Let us now define the adaptive functions u,(t)-u,(t)
as:



J. Eng. Applied Sci., 7 (1): 45-52, 2012

u, (t)=-8&(y, -v,)—a(x, -x,)—ke,
ult)=y,—(c-a)x, ~yy, +axx, —ke,

(31)
u,(t)= _B +9y, +bx, + vy, XX, —kee,

where, & £ and ¥ are estimates of «, P and v,

respectively and k,-k; are positive constants. Substituting
Eq. 31 into 30, the error dynamics simplifies to:

é =(o—-aly, -y )+ ke
e, =—k,e,

&, =(B- B —(y—DNy, ~kee,

(32)

Let us now define the parameter estunation error as:
s =B-B e, =v-¥ (33)

Substituting Fq. 33 into 32, there is obtained the error
dynamics as:

& =e,(y, —y-ke

e, =—k,e, (34

&, =e, —e,¥; — k&,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. We consider the quadratic Lyapunov function

defined by:

1
V:E(ef+e§+e§+ei+eé+ei) (35)

which 1s a positive definite function on R°. We also note
that:
i A s i (36)

Differentiating Eq. 35 along the trajectories of Eq. 34
and noting Eq. 36, we find that:

V=-ke —kel —kelte, [el(y2 —yl)—&]+

ey [63 - B} +e, [*63}’3 - ﬂ

In view of Eg. 37, the estimated parameters are
updated by the following law:

(37)

& = oy, ~y)tke,
B =e, T k.ep (38)

?:7633@ + kéey
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where, k-lk; are positive constants. Substituting Eq. 38
into 37, we obtain:

V=-kel —k,el kel kel —kseé —kﬁei (39)

which is a negative definite function on R°. Thus by
Lyapunov Stability Theory (11 et ad., 2009), it is immediate
that the anti-synchronization error i, (i = 1, 2, 3) and the
parameter estimation error decay to zero exponentially
with time. Hence, we have proved the following result.

Theorem 3: The Tigan System (Eq. 27) with known
parameters and Li System (Eq. 28) with unknown
parameters globally and exponentially anti-
synchronized by the adaptive control law (Egq. 31)

are

where the update law for the parameter estimates is given
by Eq. 38 andk; (i=1, ..., 6) are positive constants.

Numerical results: For the numerical simulations,
the 4dth-order Runge-Kutta Method with time-step
h = 107" is used to solve the two systems of differential
Eq. 27 and 28 with the adaptive non-linear controller
(Eq. 31). Researchers take:

k=2fori=12..,6

The parameters of the Tigan System (Eq. 27) are
chosen as:
a=21b=06 and ¢=30

The parameters of the Li System (Eq. 28) are chosen

as:
a=5 pB=16 and vy=1
The mitial values of the parameter estimates are taken
as:
6(0)=12, BO)=8 7(0)=20
The initial values of the master system (Eq. 27) are
chosen as:
(=12, x,(0)=8 x,(0=10
The initial values of the slave system (Eq. 28) are
chosen as:

¥ =24, y,(0)=18, y,(0)=20

Figure 7 shows anti-synchronization of the Tigan
System (Eq. 27) and Li System (Eq. 28). Figure 8 shows
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Fig. 7. Anti-synchronization of Tigan and L1 Systems
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that the estimated values of the parameters viz., &, § and
¥ converge to the system parameters ¢ =35, =16and
v =1, respectively.

CONCLUSION

In this study, we have applied adaptive control
method for the global chaos anti-synchronization of
identical Tigan Systems (2008), identical Li Systems (2009)
and non-identical Tigan System with known parameters
and L1 System with unknown parameters. The adaptive
anti-synchronization results derived in this study are
established using Lyapunov Stability Theory.

Since, the Lyapunov exponents are not required for
these calculations, the adaptive non-linear control method
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is very effective and convenient to achieve global chaos
anti-synchronization for the uncertain chaotic systems
discussed in this study. Numerical simulations are also
shown for the anti-synchromzation of identical and
non-identical uncertain Tigan and Li Chaotic Systems
to demonstrate the effectiveness of the adaptive
anti-synchronization schemes derived in this study.
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