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Observing of pH for Titration Process with Hybrid Neural Network Structure
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Abstract: This study presents the application of a numerical pH observer integrated into titration process as
an industrial replacement of real hardware electrodes to measure pH. The proposed observer 1s designed with
Labview and Matlab. First, two kinds of neural networks NN-Multilayer Perceptron network (MLP) and Radial
Basis Function network (RBF) are used, separately to design pH observers then to ensure the accuracy and
modify the response, a hybrid neural network 1s developed, it accomplishes the best features found with both
MLPNN and RBFNN. The Split-sample method 1s implemented to select the optimal NN structure. Results are
presented and compared n presence of measwrement noise (uncertamnties in base flow m and temperature

variation).
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INTRODUCTION

This research aims to design numerically, a hybrid-
based neural network pH observer to be used in titration
processes. This approach enables the
replacement of the real hardware measurement pH

industrial

electrodes which is a conventional method to measure pH
with a hybrid neural network-based pH observer. The
proposed intelligent-based observing method add more
and more accuracy to the measurement techniques and
add also more ranges to the control systems.

The hybrid NN has been developed by switching
between both Multi Layers Perceptron (MLPNN) and
Radial Basis Function (RBFNN).

This approach could mvest the points of strength
with each (MLPNN and RBFNN). The research is
designed with Labview and Matlab. The proposed hybrid
model could justify the higher accuracy in observing the
pH values and the speed enquiries for processing. An
experimental data base has been used to train the nets and
find out the optinal NN structure using split-sample
method Numerical models and results have been obtained
and discussed.

Problem description and forward problem: The geometry
of the problem is shown in Fig. 1 and 2. pH measurement
is unlike most of the on-line measurements in the aspect
that it cannot be mstalled and forgotten. It requires
constant maintenance ncluding cleaning, calibration
and fault diagnosis and even if the maintenance is
performed to the last detail, the pH probe has a
process dependent life-span after which 1t has to be
replaced (Gadewar et al, 2001; McMillan, 1994). A pH
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Fig. 1: The equivalent circuit of a pH measurement loop
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Fig. 2: The construction of the glass electrode
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measurement loop is made up of three components, the
pH sensor which mcludes a measuring electrode, a
reference electrode and a temperature sensor, a
preamplifier and an analyzer or transmitter. A pH
measurement loop is essentially as shown in Fig. 1.

A battery where the positive terminal 1s the
measuring electrode and the negative terminal is the
reference electrode. The measuring electrode which 1s
sensitive to the hydrogen ion, develops a potential
(voltage) diectly related to thehydrogen 1ion
concentration of the solution. The reference electrode
provides a stable potential against which the measuring
electrode can be compared. Because pH measurement is
a logarithmic representation of ion concentration, there is
an incredible range of process conditions represented in
the seemingly simple 0-14 pH scale. Also due to the
nonlinear nature of the logarithmic scale, a change of
1 pH at the top end (12-13 pH) does not represent the
same quantity of chemical activity change as a change of
1 pH at the bottom end (2-3 pH). Control system engineers
and technicians must be aware of this dynamic if there is
to be any hope of controlling process pH at a stable
value.

Keep in mind, application requirements should be
carefully considered when choosing a pH electrode.
Accurate pH measurement and the resulting precise
control that it can allow, can go a long way toward
process optimization and result in ncreased product
quality and consistency. Accurate, stable pH
measurement also controls and often lowers chemical
usage, minimizing system maintenance and expense
(McMillan and Cameron, 2000, Wright and Kravaris,
2001).

MATERIALS AND METHODS

Evaluation of pH value with titration processes: While pH
can be measured by color changes in certamn chemical
powders, continuous process monitoring and control of
pH requires a more sophisticated approach. The most
common approach is the use of a specially-prepared
electrode designed to allow hydrogen 1ons in the solution
to migrate through a selective barrier, producing a
measurable potential (voltage) difference proportional to
the solution’s pH.

What 1s important to understand 1s that these two
electrodes generate a voltage directly proportional to the
pPH of the solution. At a pH of 7 (neutral), the electrodes
will produce O volts between them. At a low pH (acid), a
voltage will be developed of one polarity and at a lngh pH
(caustic) a voltage will be developed of the opposite
polarity (Gadewar ef al., 2001; McMillan and Cameron,
2000; McMillan, 1994). An unfortunate design constraint
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of pH electrodes is that one of them (called the
measurement electrode shown i Fig. 2) must be
constructed of special glass to create the ion-selective
barrier needed to screen out hydrogen ions from all the
other ions fleating around in the solution. This glass is
chemically doped with lithium 1ons which 15 what makes
it react electrochemically to hydrogen ions. Of course,
glass 1s not exactly what you would call a conductor
rather, it is an extremely good insulator. This presents a
major problem if the mtent 1s to measure voltage between
the two electrodes. The circuit path from one electrode
contact through the glass barrier, through the solution to
the other electrode and back through the other electrode’s
contact is one of extremely high resistance.

The other electrode (called the reference electrode) is
made from a chemical solution of neutral (Nikhil ef af.,
2008) pH buffer solution (usually potassium chloride)
allowed to exchange ions with the process solution
through a porous separator, forming a relatively low
resistance cormection to the test liquid. At first, one might
be inclined to ask; why not just dip a metal wire into the
solution to get an electrical connection to the liquad? The
reason this will not work is because metals tend to be
highly reactive in ionic solutions and can produce a
significant voltage across the interface of metal to liquid
contact. The use of a wet chemical interface with the
measured solution is necessary to avoid creating such a
voltage which of course would be falsely interpreted by
any measuring device as being indicative of pH.

All pH electrodes have a fimte life and that lifespan
depends greatly on the type and severity of service. In
some applications, a pH electrode life of one month may
be considered long and in other applications, the same
electrode(s) may be expected to last for over a year.

Proposed NN-based pH observer: NNs are constituted of
interconnected processing elements called neurons. They
can be used for complex and non linear functions
modeling. Tn this study, two kinds of NN are utilized in the
aim to create such observer (MLPNN and RBFNN). To
over-ride the shortages and industrial drawbacks of the
hardware pH measurement tools, a numerical pH observer
has been proposed and validated. The idea is to design a
hybrid ANN-based observer that combines the features
of MLPNN and RBFNN. The two proposed nets have
been designed with Matlab as M-files and then tested. An
experimental data base (200 samples) has been created to
train the nets. Then finally, a hybrid structure has been
designed with Labview, tested and validated as will be
seen later.

MLPNN-based pH observer: The structure of the
MLPNN-based pH observer is as shown in Fig. 3. In
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Fig. 3: Structure of the proposed MLPNN observer

Fig. 3, the NN has 1 input (Q,(A0)) represents the
measured base stream as a function of temperature
variation (AB) and 2 outputs pH,, and pH,,,. Where, pH,,
and pH,,, are the pH at strong and weak acid, respectively.
The structure used in this research for this type of
application constitutes of one hidden layer with a
hyperbolic tangent activation function and output layer
with linear function. For such problems where the MLPNN
is proposed to observe the pH value, there is no general
method to fix the architecture of the network (mumber of
neurons 1n the hidden layer) (Noagy, 2009; Hagan and
Menbhaj, 1994).

RBFNN-based pH observer: RBFNN are generally
considered as a smooth transition between Fuzzy
Inference Systems (FIS) and Neural Networks (NNs).
Structurally, a RBFNN is composed of receptive units
(neurons) which act as the operators providing the
mformation about the class to which the mput signal
belongs. If the aggregation method, number of receptive
units in the hidden layer and the constant terms are equal
to those of a FIS then there exists a functional
equivalence between RBFNN and FIS (Guner, 2003
Nikhil ef aif., 2008).

The architectural view of the RBFNN-based pH
observer is very similar to that of an ordinary feedforward
neural network. The neurons in the hidden layer contain
Gaussian transfer functions whose outputs are inversely
proportional to the distance from the center of the neuron.
The hidden neurons of a RBFNN possess basis functions
to characterize the partitions of the input space. Each
neuron i the hidden layer provides a degree of
membership value for the input pattern with respect to the
basis vector of the receptive unit itself. The output layer
15 comprised of linear neurons. NN interpretation makes
RBFNN wuseful in mcorporating the mathematical
tractability, especially in the sense of propagating the
error  back through the network while the FIS
mterpretation enables the mcorporation of the expert
knowledge mto the traiming procedure. The latter is of
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Fig. 4. Three layers MLP network

particular importance in assigning the initial value of the
network’s adjustable parameter vector to a vector that 1s
to be sought iteratively. Expectedly, this results m faster
convergence in parameter space.

Training of MLP and RBF ANNs: The MLP and RBF
artificial neural networks ANNs are trained using a
supervised training rule which attempts to minimize the
error between the network and the target output patterns.
If target outputs are not required for traimng then the
learming rule 1s unsupervised and the network extracts its
own features from the training set. The Kohonen neural
network which is used to classify input vectors, learns
using an unsupervised rule. For such applications based
on an identified model, the neural network 13 typically
trained using a supervised learning procedure.

The purpose of the training algorithm is to enable the
ANN to represent a mapping which describes the 1/O
behavior of a non-linear system. To achieve tlus, the
algorithm attempts to minimize an objective function by
adjusting the ANN weight parameters. The objective
function is a measure of how well the ANN fits a set
of I/O traiming data patterns which the system has
produced (McMillan and Cameron, 2000, Hagan and
Menhaj, 1994; Nikhil et al., 2008).

The Back Propegation (BP) algorithm derived by
Werbos and re-discovered by Rumelhart was used mn 1s
research to train MLPNN and RBFNN. BP was a
substantial advance which fuelled the
resurgence of interest in neural networks. While BP has
disadvantages such as slow convergence, it remamns a
popular training algorithm.

For simplicity, the BP algorithm outlined here is for a
three layer neural network as the extension of the
algorithm to additional layers 1s straight forward. Figure 4
shows such a network where x; is the ith network input, h,
is the output or activation of the jth hidden node, ¥ is
the kth observed network output (pH), w; is the weight
connecting the ith mput node to the jth ludden layer

theoretical
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Fig. 5. The evaluation of the minimal MSE in the
validation data base (blue color) (in this case is
equal 21)

node, wy, is the weight connecting the jth hidden layer
node to the kth output node, 1 is the number of networlk
mputs, 1, 18 the number of hidden layer nodes, n, 1s the
number of network outputs.

Tn this case, we are going to study certain number of
neurcnal architectures. For each architecture, we do
different initializations of synaptic parameters to assure
that the training of the ANN converges towards the total
minimum of the error criterion. For each structure, we
calculate the mean square error MSE in the training and
validation data bases. Then, the adequate structure that
we are concerned 1s the structure which has the least
square error m the validation base (in the case 1s equal
107", For such application, we aimed to vary the mumber
of neurons in the ludden layer from 1-20 neurons as
presented above in the x-axis for the relation between the
MSE via the number of neurons m the hidden layer. And
for each structure, three different initialisations of
synaptic parameters had been carried out. The tramng
had been done wing Levenberg-Marquardt algorithm
(Guner, 2003) (Fig. 5 and 6).

Comparison of RBF and MLLP ANNs: From the obtained
results, it 1s well seen that it 1s much faster to train an
RBFNN than a MLPNN and thus, it 1s more convenient to
employ the RBFNN to establish an appropriate ANN
NARX model structure and data sample time and to
mvestigate methods of dead time compensation
(Guner, 2003). The design of these model attributes
should be independent of the type of neural network used
to perform the nonlinear mapping and thus, should be
applicable to the MLLPNN. To verify this and to compare
the relative performance of the RBF and MLPNNs, the two
ANNs and a spread encoded MLPNN were trained using
the same RAS and the PT was evaluated (Fig. 7).
Prelimmary experiments suggested 30 and 60 were
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Fig. 7: Comparison of the multi-step ahead prediction
accuracy of a RBF, a MLP and a SE MLP ANN

appropriate choices for the number of hidden layer nodes
for the MLP and spread encoded MLP, respectively.
There is little to choose between the RBFNN and
conventionally encoded MLPNN but the spread encoded
MLP gives more accurate predictions for prediction
horizons greater than one sample interval (Guner, 2003,
Niktul et al,, 2008). Finally, the capacity of the net will be
tested with respect to extracted experimental data base to
find the observed pH values that comresponded to the
least error between the estimated and ideal ones for
different 200 values of input vectors. The utilised
examples had been sub-divided into three stages (training
(100), validation (68) and testing (32)) as performed by
Split-sample method.

Hybrid NN-based pH observer: The created hybrid NN-
based pH model is designed with Labview as shown in
Fig. 8. Figure 8 shows the Hybrid observer which is
designed with using of different advanced tasks in ANN
as will explained later. The designed observer aims to
high hardness and treat the
nonlmearity of titration curve. Hybrid observer was
created by using two neural network scripted M-files
(RBF and MLP), the RBFNN was proposed in when the

achieve accuracy,
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mip training

MATLAB script

T=[1.699 1.7068 1.7146 1,72,

¥2=sim{net, new);

P=[ 00,01 0,02 0,03 0,04 0.05 0.

=288 x<=19) net=newff([.01 1,93 1[15 1] {ta
E\i'sle—g,_w net.trainParam.epachs = 100;
=} niet=train(ret, P, T);
\$x§=.2 || x==1.9) =siminet,new);
=x; ey = H
X]else o ¥ 1=sim{net, new);
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net=newrbelP, T

Hnew
S1=sim{net1,P};

Y=sim{net1, new);

Fig. 8: Hybrid structure model
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titration process passes mto nonlinear region where the
fast variation in pH value occurred (region 2 in Fig. 9).
While the MLPNN was selected to match the linear
regions proprieties in the titration process (region 1 and
3,Fig. 9). The created model with Labview shown in
Fig. 8 congists mainly of two stages; the 1st stage is the
logic operation that works to divide the input into three
limited regions; the 1st is nonlinear region (0.8-1.2), the
2nd two regions are linear ((0-0.8), (1.2-2)). The main
structural difference between the two proposed nets is the
activation function to be used. In MLPNN, the function is
a tansig while in RBFNN the function is gauss in latest
layer. This difference makes the RBFNN better than
MLPNN in dealing with nonlinear regions in the titration
process.

RESULTS AND DISCUSSION

The testing data base is of different values than the
precedent ones (traiming and validation data base). The

final ph estimated

ph estimated fram rbf

thf testing
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Fig. 10: The computed relative error RE for both a)
MLPNN and b) RBFNN

error between the real and observed pH values 1s defined
for each parameter by the relative error RE (pH) illustrated
inFig. 10a, b. Figure 10a, b shows the computed relative
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Fig. 11: The SSE plot for the performance of the Hybrid
NN-based observer

error RE at both nets. It seems that the RE produced by
MLPNN 1s 1.82% which 1s larger than that of RBFNN
(0.133%). That’s why, the MLPNN 1s recommended to be
used with linear regions in the titration process and the
RBFNN with nonlinear region as will be seen later. Using
the compatibility features found m both Labview and
Matlab (M-files), the model has been validated and the
results have been obtained Figure 11
performance of the proposed hybrid net where it can be
seen that the allowance of the sum squared error SSE has
been reached (107'*) with 11 epochs. So, the both the
accuracy and the speed enquiries have been achieved.

shows the

CONCLUSION

Two kinds of neural inverse models (MLP and RBF)
are developed to simultanecusly observe the pH value for
a titration process. Different input parameters (base flow
) and temperature variation are considered to tram, test
and validate the designed models. The models are able to
generalize and show a good observing accuracy in
presence of noise. In presence of noise, the relative errors
of the observed pH values have been computed. Then, a
hybrid NN-based structure has been developed. The
obtained results ensure the higher accuracy and rapidity
to find the optimal structure. The obtained performance is
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modified when switching between the two nets (MLPNN
and RBFNN). These results were obtained for a set of
readings containing 200 samples. With this research, the
industrial costs could be reduced when replacing the real
hardware with numerical hybrid structure connected to
the base stream (flow transmitter) and the size could be
also reduced. So, the research could match the commercial
benefits when realized.
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