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Volume Determination with Waves Scattered from Surfaces
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Abstract: Surfaces from which the ultrasound is reflected, very often are not flat. Therefore, in these surfaces
there exist scatterers of ultrasound waves that prevent measurements. Nevertheless, on the other hand,
scattered waves can be successfully used for measurements. For instance, obtained results from measurements
with scattered waves, show that it is possible to make a comparison between the unknown volume with a given
volume, taking the sum of the product of the squares of amplitudes of impulses of pressure or the sum of
intensities and time increments of given volumes. The method of echo-systems of oriented waves is more
complicated than the method with non-oriented waves (scattered waves). Therefore, here it will be shown the
possibility of the use of the systems with non-oriented waves, in order to determime the volumes of systems
with a regular or at least approximately regular geometry.
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INTRODUCTION

The source of spherical waves: The oscillation of a
spherical swrface is a wave source, which can be
represented by the velocity function U(D)e™, where the
amplitude of velocity U(D) is a function of the solid angle
expressed by the terms of the Legendre’s function

(Morse and Ingard, 1968):

U(9)= i U_P_(cos9) (1)
where, U, is:
U, =(m+ %) [U(8) P, (cos 9)xsin 8d9 ()

On the other hand, the pressure 1s expressed in the
form:

p= i A_xP (cosB)xh_(kayxe™ 3)

m=no

Radial velocity of the spherical wave surface in the
distance a 1s:

u, = LZAID x B, *P {cosd)xeg bt

PCu-o

“4)

Where:
dha(8)_ iB,(&)x e &=ka=2an/) (5)
dg
Using some properties of spherical Hankel's

functions (h,,) of the mth order (Abramowitz and Stegun,
1972), for the values ka<<tm + 1/2-(very small), we obtain
(Morse and Ingard, 1968):

B, = Ly 5, = (ka)'/3 (6)
ka
respectively, for m>0, it is:
B = 1% 2x3x5..2m-Dx (m+1)
m (ka)m+2
and
N 7m(ka)2m+1 (7)

m

Px3° %55 2m—-1)° < (2m+ D= (m+1)

Whereas, when ka=>m + 1/2, we have:

B, =1/ka

and
8, =ka-n{m+1)/2
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The radial velocity in the distance 1 = a is equal with
the velocity of the surface of the sphere.

Equalizing the coefficients of the same order, term by
term, we obtain the equation for the coefficient A,
expressed by the function U (Morse and Ingard, 1968):

= LCU“‘ ®e
B

m

—i8,

A (®)

m

Pressure and the radial velocity for large distance
from the sphere are:

u

p=pxexu; U = Sord e Py 9y
r

)

where, (D) 1s:

1 & U .
= — m P (cos9)x e—1[5m+n(m+1)f2] (1 0)
W) kan;UDB n )

U, = The mean velocity of the spherical surface of the
wave

Velocity in the vicinity of the sphere which oscillates,
is not in phase with the pressure and is not completely
radial, but, going further away from the sphere, it becomes
more radial and establishes a phase with the pressure.
When the product kr is very large, then the wave intensity
(T) and the total power (I) given from the source, in a
point with coordinates (r, ¥, is:

UZ

m

(2m+ 1B

pxcai (11)

Ano o7

= ]Edq)j[.rzlr sin 8d8 =

Theory of scattering in spherical bodies: Scattering is a
phenomenon of wave propagations and most of theories
of scattering of different waves are similar, except in some
relevant terms 1 certain wave equations.

Scattering in tissues 1s not possible to be
mvestigated in an exact way, since the acoustic properties
of tissues with dimensions smaller than the ultrasound
wavelength are not known sufficiently. Therefore, only
the usual tissue models are used and mvestigated.

The theory of scattering in spherical and cylindrical
objects has been developed by Morse and Ingard (1968).
There exist also other solutions for other types of
scatterers, but for biology and medicine, the most
umnportant are spherical and cylindrical scatterers.

In most cases, the theory of wave scattering is
realized with plane waves, whereas for ultrasound the
most useful 18 pulsive echoscopy. In this research, we
have performed the experiment with pulsive ultrasound
waves. The multiple scattering is neglected, taking mto
account the Bom’s approximation.
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When the obstacle is much larger than the
wavelength, a shadow with defined borders is created
(known from geometrical optics). Therefore, in the
following, we will deal with scatterers with dimensions
much smaller than the wavelength. In this study, the
whole scattered wave, as well as the angular scattering of
the wave 1s discussed.

The plane wave propagating through a medium
without obstacles is represented by the equation:

p — Aeik(x—ct) — Ae1k(rca53—ct) —

o (12)
=A Z (2m + 1)«i"P_{cos 9)j,_(krie ™™
Where:
P, = Legendre’ function
I = Bessel’s function
A=4pel = The wave amplitude (Morse and Ingard, 1968)

The wave 15 propagated in the positive direction of
the x-axis. This wave meets the sphere with radius a with
the center at the origin of the polar coordinate system,
where the scattering occurs. The equation for the
scattered wave in the sphere is:

p.= —Ai ((2m+ oi™ ™ < Sinﬁm)x

m=o

(13)
(Pm (cos 9)x [j_ (kr)+in_(kr)]x e‘i‘“)

whereas, the phase 1s given by the equation:

m+1

_ Zam m+1 K oo

A

=ka (14

E

and the mtensity of the wave with frequency v 1s:

a’l

[.=—x kzl—zi((ZHH 1)(2n+ l)sinﬁm sind, )><
a m.n

5 2
T

(cos (Sm -8, )Pm {cos 9P (cos 9))

_ len*v'a’l

: 9¢'r?

I (1-3cos 8)’; ka <<1 (15)

aZ

1
[ =I[—+—cot
’ [r2 41’

: 2(%)>< Ti{kaxsin9)]; ka =1 (16)

The energy of the scattered wave 1s expressed by the
equation:

I, = 2na’l

2

2 2 .
= > (2m+ 1yxsing,
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256m°a"
o}

(17)

Am=2ma =

A << 2ma =2ma’l (18)
The orientation of the direction of the scattered
waves 1s increased with the increase of frequency.

MATERIALS AND METHODS

Let a model of a sphere and a parallelepiped are
given, which change their volume with a radial pulsation
(Fig. 1).

The question is: is it possible that this change in
volume can be measured and controlled by the method of
the non-oriented pulsive echoscopy. The concept of the
solution of this problem is given:

Ultrasound probe: Piezoelectric probe is placed in the
model (in this case, sphere and parallelepiped), in a certain
distance. Experimental results are related to the distance
of the probe from the walls of the model. The anisotropy
of the ultrasound source is shown in Fig. 2, where we see
that the intensity of the ultrasound is decreasing in the
angular zones 0/30° and 150/180°.

Since, the probe is insensitive for waves arriving from
these zones, then a special algorithm is used to evaluate
the echoes of these zones, since these data complete the
recording of the echo-system (Breyer, 1982).

Ultrasound impulse: Ultrasound probe emits an impulse
of the shape given in Fig. 3a. The duration of this impulse
is 1.5 ps. The speed of propagation is ¢ = 1500 m sec™'
(for liquids). The equation of the impulse of the pressure
18:

p=p, ('t /2)xe ¥ sinat (19)

A = The attenuation coefficient of the order 3.10°
v = The frequency {v = w/2m), taken 4 MHz
P, = The initial amplitude of the pulse which must be

small enough, in order that the linearity of the
material is maintained. In practice, this is possible
and is most widely used in medical practices

It is necessary that the composition of frequencies of
the ultrasound impulse be determined (Husnia, 1982).
This can be immediately performed using the Fourier
transformations  (Fast Fourier Transform, FFT)
(Yang et al., 2005) which is based in two conditions:
«  Function must be discussed in a certain domain
Values must be discussed only for a certain number
of separate points, for a time interval At
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Fig. 1: A simplified model of structure with tissue walls

1°

200 -10°

20°

-13d8

Fig. 2: Diagram of the intensity distribution of real
ultrasound source
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Fig.3: a) The shape of the ultrasound impulse, b)
Frequency analysis of the pulse

RESULTS AND DISCUSSION

Scattered waves interfere in the probe, whereas the
time process is given in graphs of Fig. 4a-c. The abscissa
represents the time expressed in ms and the ordinate
represents the square of the impulses of the pressure (p)
of the ultrasound.
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Fig. 4: Interference of ultrasound waves in the probe:
a)P=15cm,a=11cm,0=10cm? b)P=1cm,
a=12cm,0=10cm?and ¢)P=3cm, a= 12 cm,
0=10cm?

During the analysis, the surface density (0) is kept
constant, whereas the distance of the probe from the walls
of the parallelepiped has been changed. Increasing the
volume for the unchanged position of the probe, the time
duration of the signal is increased, whereas the shapes of
the specter remained very similar.

If for the same volume, the probe is moved away from
the walls of the parallelepiped, starting time of the specter
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Fig. 5: Interference of ultrasound waves in the probe: a)

P=25cma=6cm,0=18cm?and b)P=2cm,
a=6cm, 0=16cm?

is displaced on the right and its duration became shorter
(Fig. 4¢). In Fig. 5 is shown the interference in the probe
when the surface density o is increased. It can be
observed that the amplitude of the signal has been
increased in comparison with the amplitudes of the
previous configurations shown in Fig. 4a-c.

In the numerical analysis performed, we have
obtained the total number of the squares of amplitudes of
the pressure, for the impulses recorded in the probe, for a
certain time interval. These quantities are sensitive on
volume change. We have determined the parameters that
affect the responses: the position of the probe and the
surface density of scatterers. Results are represented by
numerical values and curves. All impulses that are
received from the nearest scatterers have greater
intensities than those from the farthest scatterers. For
impulses that are received at the same time, their mean
value is taken.

In Fig. 6, curves for four different cases of the
position of the probe inside the parallelepiped are shown.
Experimental results are processed with applicative
programmes for statistical processing.
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Fig. 6: Dependence of XEpt on volume for different
positions of the probe mside the sphere
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Fig. 7. Dependence of Zpt on volume for different
surface densities

Correlation coefficients in obtamed curves, are best
fitted in the cwrve A. This curve corresponds to the
position of the probe in the distance 1 ¢cm from the walls
of the parallelepiped.

This result shows that one must be careful where
the probe should be placed, since its sensitivity is
significant in the position 1.5e¢m from the walls and this
15 the distance usually used m systems. For greater
distances this sensitivity i1s irrelevant In this analysis
it is observed that numerical channel that belongs to the
first recorded impulse, depends on the position of the
probe.

For finding the best position of the probe, usually the
calibrating graph is used. Another important parameter
is the change of the surface density 0 and in Fig. 7 results
for three cases of surface density are shown Curves are
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Fig. 8 Dependence of Zp/t on volume and surface
density for an optimal position of the probe

very similar and have almost the same shape and are
nearly equidistant. Therefore, whichever surface density
is taken, the error is not significant.

Taking into account these two parameters, we find
the relation between processes of (p/t).

In Fig. 8, it is shown the dependence of the sum of
the squares of impulses on the volume of parallelepiped
with density o = 10 cm* and for a distance of the probe
from the walls of 1 ¢m. The curve shows a hyperbolic
dependence of the time average of the squares of
amplitudes of pressure on the volume of the
parallelepiped. Therefore, this quantity can be used as a
measure for changes in volume of the parallelepiped.

CONCLUSION

The results that are obtained quantitatively describe
energetical and temporal echo-system response in relation
to the volume of a solid. The results are applicable in
practice for approximately fixed geometrical conditions.
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