Tournal of Engineering and Applied Sciences 1(3) : 262-267, 2006

© Medwell Online, 2006

Direct Adaptive Control of Nonlinear Systems Using Radial Basis Function Network
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Abstract: In this study we propose a direct adaptive control scheme for a class of nonlinear systems. The
architecture is based on radial basis functions, RBF, network to construct the adaptive controller. The

parameters of the adaptive controller are changed according to a law derived using Lyapunov stability theory
and the center of the of the RBF are adapted using the k-means algorithm. Asymptotic stability s established
with the tracking errors converging to a neighborhood of the origin. Computer simulations are presented to
show the validity and the performance of the proposed method.
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INTRODUCTION

A neural network, NN, is usually taken as a function
approximator that approximates a given nonlinear function
up to a small error tolerance. It has been proven that
artificial neural networks can approximate any nonlinear
functions to any desired degree!1.

In control engineering Multilayered perceptrons,
MLP and radial basis functions, RBF, are the most widely
used neural network. Generally this 1s done in an adaptive
control frameworl. The first applications of NN in control
did not include rigorous analysis of the stability™.

However, in  control systems, it 1s important to have

design methodologies that provide proofs of stability for

the system. Several neural network adaptive control
algorithms have been proposed based on Lyapunov’s
stability theory"™' The advantage that the adaptive laws
were guarantee the stability of systems.

Problem formulation: Consider a non linear

system that can be transformed imnto the followmg

formM*:

X, =X, i=1..0-1,
%, =f(x)+b-u, )
Y =%

Where x = [x;, X;,..., %]’ € ", uand ycR are the state
variables, system input and output, respectively, f(x) is an
unknown non linear smooth functions and b 1s a positive
unknown constant. We assume that the state vector xeR”
is available for measurement.
Define: e = [e,, e,,......]

(2
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withe, =x,x "1=1...n
where, x," i=1,...1, represent the reference signal v, = x,
and its derivatives,

The control objective is to determine a state feedback
control u =( u (x,0) based on RBF network, and an
adaptive law for adjusting the parameter vector 0 of the
network andsuch that

»  The closed-loop system must be uniformly bounded.

»  The tracking error should be as small as possible.

In order to achieve these objectives, we develop the
method for a direct adaptive controller based on RBF
network. As m the main trend of neural network adaptive
control, we first propose an ideal control law u(t) based
on feedback linearization and function of f(x) and b. An
RBF controller 1s then used to approximate this control
law. Assuming b to be non zero, the ideal control law u(t)
is thus given by

From (1), we have u* = 1/b. [v-f(x)] 3

Substituting (3) into (1), we can cancel the nonlinearities

and obtain  the simple input-state relation
(multiple-integrator-form):
x, =f(x)+ b.(%.[v —fx
“

x, =f(x)+v-f(x)

X, =V

We then cheoose the artificial input v as a siumple
linear pole-placement controller that guarantees the
stability of the overall system:
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v=x,"" -k e - nilkléi ®

1=1
with the k chosen so that the polynomial:
S, + K8+ + K, = 0 has all its roots strictly in the

left-half complex plane. Then the ideal control law 1s:

w = %(x;"‘” ke, - S ke —f(x) ©
1=1
based on (1) and (2) we have
én = Xn_xd(nrl) = XX (’D
then (6) becomes:
1 ol
W= (ko - 3 ke, — [(x)) ®)
1=1
Substituting (8) mto (1), we have:
% =%, ke - Yke, ©
=
using (7) we can obtain:
é +k e  t..tke tkye =0 (10)

this implies that lim e(t) =0
dynamics). Since f(x) “and b are unknown, the ideal

(exponentially stable

control u* of ( 3) can not be implemented. Our purpose 1s
to design an RBF with output u(x, 8) to approximate this
1deal control.

The RBF adaptive controller
The RBF network: The RBF network can be considered
as a two-layer network in which the hidden layer performs
a fixed nonlinear transformation to map the input space
into an intermediate space, then the output layer
combines the outputs of the intermediate layer linearly as
the outputs of the whole network. An RBF network with
n input and a scalar output is represented in Fig. 1. Since
the output depends lmearly on the weights, then the
training is simply a linear optimization problem™,

More explicitly, the RBF network performs the
transformation:

f: R"— R with:

u(X,B):géQ 0E®) & = ax o) an
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x is the input vector,
¢ () is a non linear function, called radial basis function,6,
are connections weights (parameters) between the hidden
layer and the output layer, ¢, are centres of basis
functions, nr 1s the number of basis functions. We have
considered here an RBF network with only one output.
The most used basis function 1s the Gaussian
function.

(r) = exp (-*/2.6°) (12)

With r =|| x-¢/ll,, ¢; 18 the centre of (1), 0 1s an associated
constant to the function ¢ (r) and represents the width of
the Gaussian function.

Training and centre placement in an RBF network:
Usually the training procedure for RBF networks 1s
divided in two stages: An unsupervised training for the
centres adjustment of basis functions m the ludden layer,
followed by a supervised traming for the connections
weights adjustment between the output layer and the
hidden layer.

However, in control applications, online training is
only concerned with the connections weights between
the hidden and output layer and the centres are fixed off
line. In this study, we propose to online adjust both the
centres of the basis functions and the connections
weights. The k-means algorithm and the recursive least
square method are often used respectively for the centres
adjustment and the adaptation of connections weights.
Here, we will use the k-means algorithm for the centres
adjustment.

Centres adjustment: The k means algorithm 1s an
unsupervised training method for data clustering™. It
consists 1n dividing the mput space ito k classes as
follows:

Choose a number of classes (k basis functions in
our case).
Initialise the centres of the basis functions.

Compute the Euclidean distances between the
centres of each basis function and the input vector x.

dist() =l x-cll, . i=1to nr (13)
then adjust the vector of centres ¢, which corresponds to
the minimum distance dist()) = min ” x-cl, using the

following adaptation law:
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Fig. 1: The system state x (t) and the desired position
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Fig. 2: The control input u (t)
o (1) =g (t —D)+a(t).(x(t) —¢,(t —1)) (14)

where ] 1s the index of the basis function which
corresponds to the minimum Euclidean distance dist())
and a(t) is a gain belonging to the interval [0 1] and
which tends to zero as. One adaptation law for this
parameter 1s:

alt—1)

a(k) :m (15)

where t and 1s the time, nr 1s the number of basis
functions and int s the integer part of (t/nr) .

Weights adaptation: In the following we derive the
adaptation law for the comnections weights using
Lyapunov synthesis approach.

From (1) we have:

%, =f(x)+bu(x,0) (16)
now adding and subtracting b.u* to (16) we will have:
%, =f(x)+bu(x,8)+bu’ —bu’ (17)
Substituting (8) into (17), we obtain:

x, =f(x)+bux.8)-bu +(x , -k

e - Sk —fx)1®
thus:

% —x, +k,e + ke = bux8)—u) (19)

1=1

Leading to the error systemnu:

e=Ae+B (u(x,0)-u")) (20)
with
fo 1 o0
0 0
A = (21)
0O 0 0 .. 0 1
-k, k K .. k., k.
K
0
B, =|.
0
b

Let’s now study the stability of the system in order
to develop an adaptive law to adjust the parameter vector
0 of the RBF controller.

From (11)we have :

u(x,8) = ?7E(x) (22)
From (20) .the error equation can be rewritten as

é=Ae+B (ux0)-u'(x,6)) (23)

Where 0 1s the optinal parameter vector
corresponding to the optimal control signal u*(x,6*) and
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Fig. 4: The control input u(t)

0* is the ideal parameter vector corresponding to the ideal
control signal u*(x,0*)

We can write: u(x,0) = 6t Ex) u*(x,0%) =6*TE(x)
let p = 6-8* we obtain:

é=Ae+ B ix) (24)
Define the Lyapunov function candidate:
V= (25)

1 T b T
e Pet+r—
2 2.y(p ¢

vy is a positive constant and P is a solution of the
Lyapunov Eq:
ATP+PA =-Q WithQ>0. (26)

Differentiate V with respect to time:
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T

V:léTPeJrleTPéJrEci) cp+£ch.p (27)
2 2 2y 2y
using (24) and ( 26), we have :
Vol (28)

b .
= e'Qete' PR E(x)+—0 @
Y

Let P, be the last column of P and using (21) we obtai:

¢"PB, =¢"P.b (29)

Substituting (29) into (28), we have

V = _%eTQe + Ef T(’Y'eTPna(X)-’— (.p) (30)
T

in order to make V < 0, setting the second term of V
equals to zero, 1.e:

%@T (ve'PEx)+ ©)=0 (3D

recalling that ¢ = 6-0* =0, from (31) we obtain the
adaptation law

0= -ye"P,E(x) (32)

__!

which guarantees e'Qe<0
2

V=
Design of the direct adaptive RBF controller: The design
of the RBF adaptive controller can be summarized in the
following steps

Step 1 Off line computations:

Define the number of basis functions with centres
uniformly cover the domain of data variation.
Specify the parameters kg such that all roots of
SU+ K, 8+ + K8 K, =0
left-half plane.

Specify a positive definite n x n matrix Q.

. are i the open
Solve the Lyapunov Eq. (26) to obtain a symmetric
p=0.

Step 2: On-line adaptation: Apply the feedbaclk control
(11) to the plant (1).
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Fig. 5. The velocity of the system x,(t) and the desired
velocity

Use the adaptive law (32) to adjust the connections
weights and the k means algorithm to adjust the center of
the RBF’s.

RESULTS

Example 1: Tn this example, we apply the anddirect
adaptive controller RBF and to regulate to the origin  an
unstable system™:

_ amEl)

. 1
T

+ult) (33)

From (33) we have: x(t)= 1-*%1+e™® > 0 forx(t)and
1-e*¥/1+e*” < 0 forx(t) < 0.

We set y=2.5 and k; =3 in order to have all roots of
S+k, = 0 are in the open left-half plane and with Q = 12 we
can obtam: A, = -k; =-3 (see 20) and p=2.

The RBF network comprises five radial basis
functions. The parameters 0, are randomly initialised
andin the interval [0 1]. The andcentres and of the basis
functions are uniformly distributed in the interval [-2 2].
The initial condition is x{(0) =1. Fig. 1 shows the system
state x(t). We see from this figure that the proposed direct
adaptive control could regulate the plant to the origin and
Fig. 2 shows the control input u(t).

Example 2: In this example, we considera two dimensional
X, =X,

non linear system''*:
We apply the anddirect adaptive RBF controller
and to control the system state x,(t) to track a desired

sin{4mx,) || sin(mx,) (34)

X, X,
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trajectory which is specified as the output of a third order,
critically damped system with a bandwidth of 10 rad/s
driven by a unity amplitude, 0.5 mean, 0.4 Hz. square
wave.

We choose vy =75, k; =2 and k; =3 m order to have all
roots of $+k,.S+k, = 0 in the open left-half plane,
Q =diag(8,8) =0, then by solving (26) we can obtain:

10 2

2 2
The RBF network has five radial basis functions. The
parameters 0; are imtalised to zero, andthe andcentres
and of the basis functions are uniformly distributed in the
interval [-1 2]. All initial conditions are taken as 0. Fig. 3
shows the system state x,(t) and the desired position. We
see from this figure that the system state x(t) tracks the
desired trajectory. Fig. 4 shows the control mput u(t).

Fig. 5 shows the velocity of the system x,(t) and the
desired velocity.

(35)

CONCLUSION

In this study, the RBF( Radial Basis Function ) neural
network system 13 used in the diect adaptive RBF
controller. The major advantage is that the accurate
mathematical model of the system is not required to be
known. The proposed method can guarantee the stability
of the resulting closed-loop system m the sense that all
signals involved are umformly bounded. Finally, we use
the direct adaptive RBF controller to control two nonlinear
systems.
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