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Study of Transient Transverse Vibration for a Pipe
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Abstract: A Fluid Structure Interaction (FSI) is the interaction of some movable or deformable structure with
an internal or surrounding fluid flow, FSI are essential consideration in the design of many engineering systems,
e.g., awrcrafts, nuclear and piping system. The govemning equation of transverse vibration for pipe conveying
fluid was derived from momentum equation for moving control volume and the continuity equations, the
coupling between the fluid and pipe forces was considered. The equation derived was compared with those
from the previous researchers for validation of the proposed equation. The FSI water hammer equation coupled
with proposed equation was presented and the system was solved to find the transient pressure and the
displacement associated with it. The Method of Characteristic (MOC) and Finite Difference Method (FDM) were
used in the solution. In this study, a numerical application was done for the proposed equation, the present
results reveal acceptable with previous researchers’ results. The pipe length between the supports has a
significant affect on the pipe displacement. The displacement to the pipe length ratio when succeeds (0.5%)

or more has effect on the fluid pressure and velocity.
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INTRODUCTION

Unsteady flow induced vibration often occurs due to
pump and valve operations in pipeline systems and even
i human circulation 13 of concem to the hydropower,
petroleum industries and biomedical engineering research.
In this study, we focus on the vibration of hydraulic pipe
occurs from water hammer phenomenon. Many
researchers deal with the formulation of water hammer
equations and the solution of these equations, they used
MOC and FDM explicit and implicit {Afshar and Rohani,
2008; Kwon and Lee, 2008). From the literature review in
the pipe conveying fluid, there are many researchers
studied various cases. The MOC with no interpolations,
no adjustments (of wave speeds) and no approximations
was used for solving the four equations model describes
the axial vibration of liquid-filled pipes. It 1s vahd for
linear, non-dispersive,  non-dissipative, hyperbolic
systems with linear (or quadratic) time-dependent
boundary conditions. It gives exact solutions without the
errors of the conventional approaches (Tiysseling, 2003).
Hamilton principle with the assumption that gravity,
pressure and fluid friction effects and restoring flexural
forces are neglected was used to model the transverse
vibrations of highly tensioned fixed-fixed and fixed-shding
supported pipes with vanishing flexural stiffness and

transporting fhud with time-dependent velocity (Halio and
Bovaci, 2000). The vibration of a straight pipe conveying
fluid when both ends are fixed analyzed by using the
Euler-Bemoulli beam theory and the general lagrange
strain from the extended Hamilton principle, the non-linear
equations of motion for the longitudinal and transverse
displacements are derived where the longitudinal and
transverse displacements are coupled with each other.
With the discredited equations obtamed by the Galerkin
method, the natural frequencies and the dynamic
responses are computed (Lee and Chung, 2002). The
equations of motion for straight flid-filled pipes are
approximated to be similar to those for a Timoshenko
beam on a Winkler foundation.

The derivation is also based on the assumption of
long axial wavelengths, the compressibility of the fhud 1s
neglected and the internal fluid loading on the pipe 1s
approximated as an increase in the radial inertia
(Finnveden, 1997). The Finite Element Method (FEM) and
Transfer matrix method were used for solving many
combinations of the coupled pipe fluid equations for the
dynamic pressure and displacement in longitudinal and
transverse directions in different = models
(Birgerssona et al., 2004; Kochupillail et al, 2004,
Lia ef al., 2002; Hansson and Sandberg, 1998; Lin and
Tsai, 1996). The equation of motion for cantilever pipe
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conveying fluid was modeled based on non-linear
Bemoulli-Euler type beam with assumption that
transverse shear deformation and rotator-mertia are
neglected where the equations of motion directly
result in a finite set of ordinary differential equations
(Michael, 2008). A rigorous derivation of one-dimensional
equations  describing  fluid-structure  mteraction
mechanisms 1n the axialradial vibration of liqud-filled
pipes has been done thereby taking the thickness of the
pipe wall into account through the averaging of hoop and
radial stresses. FSI coupled wave speeds have been
formulated and investigated (Tysseling, 2007). A new
matrix method was used for calculating critical
flow velocity of curved pipes conveying fluid which
have arbitrary centerline shape and spring supports
(Huang et al., 2002). The parameter of the pipe and the
fluid on the frequencies at up and down stream of the pipe
by the shell theory were studied (Zhang, 2001). The non-
linear equations of motion of a flexible pipe conveying
unsteadily flowmng fluid are derived from the contimuty
and momentum equations of unsteady flow. These partial
differential equations fully coupled through
equilibrium of contact forces, the normal compatibility of
velocity at the fluid-pipe mterfaces and the conservation
of mass and momentum of the transient fluid
(Gorman et al, 1999). From literature reviewed, the
equations governing the vibration of the pipe derived
with various assumptions depends on the operation
conditions of the research. Tn this study, there is a model
of equations to study the pipe vibration in a very simple
assumption with acceptable result with previous models.

are

THE EQUATIONS OF MOTION

The equation of motion of supported ends pipe
conveying pulsating fluid for a pipe of flexural rigidity EI,
length 1, cross-sectional area Ap and mass per unit length
mp, conveying fluid of mass per unit length mf with
velocity U varying with time and cross-sectional area A.
t 13 the time and x 13 the coordinate along the centerline of
the pipe. The displacement w with negligible longitudinal
displacement. The non-inertial momentum equation for
moving control volume can be given by:

d
Y B, — [acypdv :aCjVUrp av+ él;Urp (Uu.day (O

Where:

F.. = The external forces acting on the control velume

acy = The acceleration of the control volume relative to
mertial axes

p = The fluid density

V = The volume
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U, = The control volume relative velocity measured
relative to moving control volume

Elements (dx) of the pipe and the enclosed fluid was
considered as shown m Fig. 1, subjected to small
transverse motion w(x, t). From Fig. la for the fluid
element, the external force balances in the x-z plane in x
and z direction, respectively yield:

—[(APcosBY + Nsin 6+ fScos 6+

_ 2)
m;gsin8]dx = ZFX

~(APsinBY — NcosO+ {Ssin 9+

(3)
m,gcosB]dx = E F,

Where:

fs = Shear stresses on the internal surface of the pipe

N = Transverse force per unit length between pipe
wall and flud

S = Inner perimeter

Similarly for the pipe element (Fig. 1b):

[(TcosB) —(Qsind) +(Nsin8) + fScos O — (4)
m,gsinB]dx =0

(QcosBY + (TsinB) — Ncos6 +

f8sin O -m_gcosO = mw

(5

N

(@

PAHPAY. dx

X

Fig. 1. a) The flud element forces; b) The pipe element
forces
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The transverse shear force in the pipe given by: The two fluid momentum equations; Eq. 11 and 15
can be combined by eliminating the N term. With neglect
Q= —EI(w” - 2w'w”* — 0.5w"'w™) (6) to higher order terms the fluid momentum equation can be:

(APY + S+ m, (U + UU’+ 2gw’) + a6)

For Eq. 1, the 1st term on the left was represented by i o, . o
Eq. 3 in the z direction. For the 2nd term on the left of [W+2Uw + Uw + U'w" + UU'W Jwm, =0
Eq. 1 with some mampulations:

The shear stress m Eq. 16 can be represented by
IﬂcvpdV = M, a.,dx =m, (W + Uw Mx (7)  Darcy-Weisbach equation:

L 8 =m,(f/2DYU |U|) (17)
For the 1st term on the right side of Eq. 1:

5 Substitution from Eq. 17 into Eq. 16 gives:
— [UpdV =m, Ow + Uw)dx (8 7
ot &y (APY +m,((f/2D)U [U )+ U+ UU’+ 2gw") +

[W+ 2Uw + Uw'+ U'w” + UU'W]wm, =0

(18)
For the 2nd term on the right side of Eq. 1:

Now, the continuity equation for the control volume

I Up (U,.dA) = m, (U'w” + UUW)dx (9)  given by (Wylie and Streeter, 1983):
cs
. . S pPLoA
Equation 1 in the z direction becomes: g"’ A +U =0 (19)
- o’ o 2 r__r
EFZ =[w +2Uw’+ Us’+ Ulw "+ UU'wJm,dx (10) Also, the flnd bulk modulus of elasticity and the time
rate of change of the cross-sectional area of a control
By the use of Eq. 3 with Eq. 10, we found: volume are given with the pipe pre-tension, respectively

by (Wylie and Streeter, 1983):

[(APsin®)" — NcosO + Ssin 0+ m.gcosO]dx + an

[ + 20U+ Uw’ + U’w” + UU'w ]m,dx =0 p_P (20)
p K
From Eq. 6to 5 then in Eq. 11 with some manipulation . D
give: é:_P(p_iT) (21)
A FEh 2ZA

mWw + (APwY + [2UW + Uw’+ Uw” + UU'W'|m, +
EIw”™ +mg, — EI[5w'ww” + 2w” + 0.5w”w""] =0

(12) , 1.,
Where: T=T,+EA (u'+ E(W %) (22)

The tensile force to axial displacement was given
to be:

m=1m,; +m, (13 Where:
u’ = Longitudinal displacement
= Initial tension

=

With same manner, the Eq. 1 in the x direction T

becomes: » = The pipe cross-sectional area

= Fluid bulk modulus of elasticity
D; = Internal diameter of the pipe

h = Pipe walls thickness

v = Poisson ratio

o

Y, =(U+UU)mdx (14)

From Eq. 2 into Eq .14:

(APcos8)'+ Nsin® + fScos + (15) By substituting Eq. 20-22 into Eq. 19, the following

m;(U+ UU" +gsing) =0 equation can be derived:
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P+ UP - 2vpal(ww + Uww" + palU’ =0 (23)

a’ =(K/p)/(1+KD,/Eh) (24)

Equation 18 and 23 are fully coupled with the
vibration of the pipe in the lateral directions. For the pipe
conveying fluid, Eq. 18 and 23 become identical to the
equations of continuity and momentum in the classical
water hammer theory used by Wylie and Streeter (1983).
Thus, far three fully coupled pipe dynamic Eq. 12, 18
and 23 were derived in terms of three dependent variables:
transverse displacement, fluid velocity and fluid pressure.

DISCUSSION

To validate the equation modeled in this study, we
rewrite Paidoussis equation’s (Lee and Chung, 2002) with
same notation of this study to be:

- " ’ -7 2._» 3 ’2 -
mw + [Uw’ + 2Uw + U'w" Jm, *EA[EW W+ (25)

oK

Ellw™ — 2w w™ - 8www” - 2w" | =P

Also, Lee equation (Lee and Chung, 2002) to be:

mw +[Uw’ + 2Uw’ + U'w"Jm, + E[[w”]=P  (26)

The equation presented in this study, Eq. 12
compared with those equations from the literature review,
Eq. 25 and 26.

All the equations have the same linear terms and
the difference in the non linear terms. ITnEq. 12 and 25,
the depends on the transverse
displacement compared to Eq. 26. In Eq. 12, the pressure
forces is considered to be function of distance along the

non-linear terms

pipe but in Eq. 25 and 26, the pressure 1s constant along
the pipe.

NUMERICAL APPLICATIONS

A Finite Difference Method (FDM) 1s applied directly
to solve the partial differential Eq. 12 for the dynamic
response of the fluid-pipe system. The boundary
conditions to complement the equation of motion, Eq. 12

for a pipe simply supported at both ends are:

wi(0, 1) =w"(0,t)=0
wi(L, t)=w'(L, t)=0

27
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The fluid-pipe system is discredited into n short
segments. The initial velocity is assumed to be steady.
The fluid transient forces exerted on the pipe to cause the
pipe displacement was covered by the coupled equations
of water hammer with fluid structure interaction with the
assumption that the displacement in longitudinal direction
of the pipe was neglected.

The Method of Characteristic (MOC) was applied on
Eq. 18 and 23 and then the FDM used to solve the
equation to estimate the transient pressure which will be
used to solve Eq. 12. The application of MOC on Eq. 18
and 23 give the flowing two equations:

d_UJr Ld_PJr LU | u ‘ +
dt apdt 2D
2gw’ —al2v(w'w + Uw'w" + w”U") +

(W+ 2Uw + Uww’ =0

CHd+w™)

(28)

%:U+a
dt

f
+—U|U|+
2D

Y+ WU+

du 14dPp

At ap dt
2ew’ + a(2v(ww + Uw'w”
(W+ 2Uw + Uww’ =0
% =U-a

i+ w?)

(29)

The equations derived for the water hammer seen to
be more complete in the terms describing the FSI
coupling. A computer code was written to calculate the
dynamic response of a pipe in a system consist of
reservoir, pipe and valve; the pipe simply supported at
both ends and conveying flud with imtally study
velocity to observe the effect of the sudden valve closure
on the pipe structure, the ratio of the thickness to the
diameter of the pipe, the ratio of the diameter to the pipe
length and the verification of the present Eq. 12 with
equation of Gorman et al. (1999).

The parameter used in the numerical calculation as
follow; the mitial pressure 1s 10 Mpa. The mitial velocity
is 5msec™. WD = 0.05and 0.01. D/L = 0.05 and 0.025, L.
represents the test section of the pipe. The remaining of
the pipe length was chosen to combatable with wave
velocity to allow the resonance to occur. For the reality,
the velocity and the pressure are coupled directly in the
calculation with displacement equation, the initial
excitation from the equilibrium was calculated based on
pipe deflection. For the numerical stability the pipe grid
and time interval were chosen according to equation of
Watters:
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Fig. 2: a) Displacement comparison (W'D = 0.05, D/L =
0.05, time = 0-1 sec); b) Displacement comparison
(h/D = 0.05, D/, = 0.05, time = 0.02-0.03 sec)

AL

At=——-—-—
max‘a-%—V‘

(30)

Figure 2-10 show the dataat x =051, Fig. 2, 5and 8
show the displacement of the pipe under transient
condition when the valve was closed rapidly for the
comparison of the two models, we see that the tow models
have the same result in Fig. 2 but in Fig. 3, a little
differences appear.

In Fig. 8, the differences appear to show the
responsibility of the present model to the dynamic
pressure 1s more than the Gorman model. Figure 2 and 5
show the effect of the pipe thickness on the displacement;
the result shows the decrease i the h/D ratio five times
increase the displacement about three times. Figure 2 and
8 show the effect of the pipe length on the displacement;
the result shows the decrease in the D/L ratio two times
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Fig. 3: a) Pressure history comparison (/D = 0.05
D/L = 0.05, time = 0-1 sec), b) Pressure history
comparison (/D = 0.05 D/L = 0.05, time = 0.2-1
sec)
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Fig. 9 Pressure history comparison (h/D = 0.05,
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increase the displacement 150 times. Figure 3 and 6 show
the effect of the displacement on the pressure
history.

The effect become more significant with decrease of
the ratio h/D also from this, we find that the ratio /D
affect the amount of the transient pressure in Fig. 3, the
pressure decrease after one cycle but in Fig. 6, the
pressure  fluctuate with transient increase in the
pressure.

Figure 4 and 7 show the effect of the displacement on
the velocity profile; the velocity means value remain
constant for h/D = 0.05 but have a little change for
hD = 0.01. In Fig. 9 and 10, we found that the effect of
the FSI is very clear on the pressure and the velocity
profile.

120

g e Uncoupled Coupled
T§ 2.5 !‘. % 5
- ,
2 i
E :
2 15

L] T L] T L] T L] IM/T\_'I
¢ 01 02 03 04 05 06 07 08 09
Time (sec)

Fig. 10: Flow rare history comparison (W/D = 0.05,

D/L = 0.025)
CONCLUSION

Study on the pipe vibration from transient pressure
was done to cover the derivation of the pipe displacement
equations which coupled with the fluid forces and
equations of the classical water hammer coupled with pipe
forces. The MOC and FDM were used to solve the
equations for the present model to verify the present
model. Also, the effect of the pipe thickness and the pipe
length were studied. The model presented in this study
for transverse vibration has a good response to the
dynamic forces applied from the pipe. By the current
model, the displacement, the pressure and the velocity at
any point in the pipe can be easily calculated for unsteady
internal flow under transient condition.
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