Journal of Engineering and Applied Sciences 6 (1) 71-78, 2011

ISSN: 1816-949%
© Medwell Journals, 2011

A Novel Scheduling Algorithm in OBS Networks

"Dhaneesh Chandran and *Tanahanlal Stephen
"Department of Communication Engineering, IES College of Engineering, Thrissur, Kerala, India
*Department of Computer Science, Illahia College of Engineering, Ettumanocr, Kerala, India

Abstract: Optical Burst Switching (OBS) is a promising paradigm for the next-generation internet. In OBS, a key
problem 1s to schedule bursts on wavelength channels whose bandwidth may become fragmented with the
so-called void (or 1dle) intervals when attempting to reduce the burst loss with both fast and bandwidth efficient
algorithms. Till date, only two scheduling algorithms called Horizon and LAUC-VF have been proposed which
trade off bandwidth efficiency with fast runmng time and vice versa. In this study, we propose several novel
algorithms for scheduling bursts in OBS networks with and without Fiber Delay Lines (FDLs). In networks
without FDLs, the proposed Min-SV algorithm can schedule a burst successfully m O (log m) time where m 1s
the total number of void intervals as long as there are suitable void intervals. Simulation results suggest that
the algorithm achieves a loss rate which is as low as that provided previously known algorithm LAUC-VF but
can run much faster. In fact, its speed can be almost the same as Horizon (which has a much higher loss rate).
In networks with FDL's, the proposed Batching FDL algorithm considers a batch of FDL's sumultaneously to
find a suitable FDL to delay a burst which would otherwise be discarded due to contention, instead of
considering the FD1's one by one. The average search time of this algorithm is therefore significantly reduced
from that of the existing sequential search algorithms.

Key words: Optical barst switehing, schedule bursts, fragmented, horizon, networks, algorithm

INTRODUCTION

To meet the mcreasing bandwidth demands and
reduce costs, several optical network paradigms have
been under intensive research. Of all these paradigms,
optical circuit switching (e.g., wavelength routing) is
relatively easy to implement but lacks efficiency to cope
with the fluctuating traffic and the changing link state;
Optical Packet Switching (OPS) 1s a natural choice but the
required optical technologies such as optical buffer and
optical logic are too mnmature for it to happen anytime
soon. A new approach called Optical Burst Switching
(OBS) that combines the best of optical circuit switching
and optical packet switching was proposed by Yoo and
Qiao (1997) and Qiac and Yoo (1999) and has received an
increasing amount of attention from both academia and
industry worldwide (Xiong et al., 2000, Xu et al., 2001;
Detti and Listanti, 2002; Hsu ef al., 2002).

In an OBS network, an ingress OBS node assembles
data (e.g., TP packets) into (data) bursts and sends out a
corresponding control packet for each burst. This control
packet 1s delivered out-of-band and leads the burst by an
offset time, o. The control packet carries among other
information, the offset time at the next hop and the burst
length 1. At each intermediate node along the way from

the ingress node to the egress node, the control packet
reserves necessary resources (e.g., bandwidth on a
desired output channel) for the following burst which will
be disassembled at the egress node.

A prevailing reservation protocol in OBS networks is
called Just-Enough-Time (JET) whereby a control packet
reserves an output wavelength channel for a period of
time equal to the burst length |, starting at the expected
burst arrival time r (which can be determined based on the
offset time value and the amount of processing time the
control packet has encountered at the node up to this
point in time). Tf the reservation is successful, the control
packet adjusts the offset time for the next hop and is
forwarded to the next hop. Otherwise, the burst 1s blocked
and will be discarded if there 1s no Fiber Delay Lines
(FDL's).

If a FDL providing say d units of delay is available
for use by the burst and the chammel will be available for
at least | umts of time starting at time r+d, the control
packet will reserve both the FDI, and the channel for the
burst which will not be dropped at this node.

Because bursts do not arrive one right after another,
the bandwidth on each chammel may be fragmented
with the so called void (or idle) intervals (Fig. 1).
These void intervals may be utilized by a scheduling

Corresponding Author: Dhaneesh Chandran, Department of Commumication Engineering, IES College of Engineering, Thrissur,

Kerala, India

J. Eng. Applied Sci., 6 (1): 71-78, 2011

Channel 0
| | Channel
| | | |Channel 2
| fe—voia—]] | | Channel 3
[] [| Channel 4
——» Time New
burst

Burst arrival time r

Fig. 1. Channels are fragmented into voids before
scheduling a new burst

algorithm to make the reservation for some bursts
whose corresponding control packets arrive after the
void mtervals have been created (which is possible when
the JET protocel 18 used and the bursts have a variable,
non-zero offset time). However to keep the information on
all existing void intervals and to search for a suitable one
upon receiving a control packet (or equivalently a
reservation request) could be a daunting task. In OBS
networks, a key problem is thus to design efficient
algorithms for scheduling bursts (or more precisely their
bandwidth reservation). An ideal scheduling algorithm
should be able to process a control packet fast enough
before the burst arrives and yet be able to find a suitable
void interval (or a suitable combination of a FDL and an
void interval) for the burst as long as there exists one.
Otherwise, a burst may be unnecessarily discarded either
because a reservation cannot be completed before the
burst arrives or simply because the scheduling algorithm
1s not smart enough to make the reservation.

Given the fact that OBS uses one-way reservation
protocols such as JET and that a burst cannot be buffered
at any intermediate node due to the lack of optical RAM
(a FDL if available at all can only provide a limited delay
and contention resolution capability), burst loss
performance 1s a major concern in OBS networks. Hence,
an efficient scheduling algorithm that can reduce burst
loss by scheduling bursts fast and in a bandwidth
efficient way 13 of paramount concemn in OBS network
design.

So far, two well known scheduling algorithms have
been proposed. Horizon (Turner, 1998) does not utilize
any void intervals and thus is fast but not bandwidth
efficient (Fig. 2). On the other hand, LAUC-VF
(Xiong et al., 2000) can schedule a burst as long as 1t 1s
possible but has a slow runmng tiume (Fig. 3).

In thus study, we propose an efficient way to organize
the void intervals and as well as algorithms to schedule a
burst as long as it is possible. The algorithms can
schedule bursts at least as efficiently as any existing
scheduling algorithms (mcludng LAUC-VF) and can
handle the case with FDL's efficiently as well. In addition,

72

New

| | burst Channel 0

| Channel 1

| | [| Channel 2

| |<_V°id_’|_| | | Channel 3
[] | [Channel 4

—> Tlme

Burst arrival time r

Fig. 2: Horizon schedules the new burst in Fig. 1 to

channel O
| Channel 0
| I Channel 1

New

2
| | burst |Channel 2
[[—Void—»[] |] Channel 3
1 | Channel 4

— Time

N

Burst arrival time r

Fig. 3: LAUC-VF schedules the new burst in Fig. 1 to
charme] 2

the scheduling algorithms take as little as O (log m) time
where m is the total number of void intervals which
improves over the LAUC-VF algornithm by k times where,
k 18 the number of wavelengths on each link. Since, we
can easily reduce the binary search problem to this
channel scheduling problem, the lower bound of this
problem 13 O (log m), meamng the algorithm s
theoretically optimal.

In fact, the simulations show that on average, it can
mun as fast as Horizon (which has a much higher burst
loss rate). Also n case, there are up to B different delays
via FDL's available, the algorithm can batch process
multiple possibilities and achieve an average runming time
which 15 much faster than that of existing approaches that
sequentially checks one FDL at a time.

LITERATURE REVIEW

Problem description: Tn an OBS network, it is possible
that a control packet may arrive o units of time (which is
called the offset tine) before the corresponding burst b
arrives.

In such a case, the reservation for the burst will not
start at the current time (1) but at r = o+t (1.e., when the
burst actually arrives). If the burst’s length 1s 1 the
reservation will be made until f = r+l. Because bursts may
not arrive one after another without any interval in
between each channel is likely to be fragmented with

J. Eng. Applied Sci., 6 (1): 71-78, 2011

several reservation periods, separated by idle (also called
void) intervals. More specifically, each of the k channels
initially corresponds to a void interval from time O to
positive infinite.

Let each void interval Tj be modeled as an ordered
pair (8], e)) where sj and ej are the starting and ending
time of the void mterval Ij, respectively with ej>s). We
say a void interval Tj is feasible to a data burstb = (1, f)
if and only if 8j r and ej f. Once the reservation is made
using a feasible interval Ij up to two new void ntervals
may be created which are (sj,1) and (f, ej), respectively.

An efficient scheduling algorithm should be able to
fit a new reservation period into an existing void interval
whenever possible to mcrease the bandwidth utilization
and decrease the data loss rate.

The availability of FDL's at each node further
complicates the design of scheduling algorithms. More
specifically assume that there are B different delays
(dl <d2<= + « » <dB) that a burst can obtamn via FD'Ls ata
node. Then, the possible offset time values are o, ol, 02,
+ ¢+ 0B where o] = otdj for 1 j B. This in turns leads to
B+1 different starting times r, 11, 12, + * », rB and fimishing
times f, f1, {2, « « » , B of the reservation period for the
burst. An efficient scheduling algorithm thus needs to
examine up to B+1 possible ways to satisfy a reservation
request for each burst.

In addition to be efficient m terms of bandwidth
utilization and loss rate, a scheduling algorithm also needs
to be fast as mentioned earlier. Assume that the minimum
burst length 1s 1 unit time (e.g., a millisecond). For an OBS
switching fabric having N input links, each multiplexed
with k channels, the maximal number of control packets (or
reservation requests) that may need to be processed is
kN per unit time. For N = 64, k =100 and a unit time of 1
millisecond, this translates to a required processing speed
of 6.4 million requests per second.

Prior solutions and their limits: Several algorithms have
previously been studied for solving the channel
scheduling problem. Tuwmner designed the Horizon
scheduling algorithm (Turner, 1998).

In this algorithm, a scheduler only keeps track of the
so0 called horizon for each channel which 1s the time after
which no reservation has been made on that channel. The
scheduler assigns each arriving data burst to the channel
with the latest horizon as long as it 1s still earlier than the
arrival time of the data burst (this 1s to mimmize the void
interval between the current horizon and the starting time
of the new reservation period; Fig. 2 for an example). For
a link with k channels, the best implementation of the
horizon scheduling algorithm takes O (log k) time to
schedule a burst. Accordingly, the horizon algorithm is

73

relatively simple and has a reasonably good performance
in terms of its execution time. However, the horizon
scheduling algorithm results in a low bandwidth utilization
and a high loss rate.

This is due to the fact that the horizon algorithm
simply discards all the void intervals. Xiong et al. (2000)
proposed a channel scheduling algomthm, called
LAUC-VF (Latest Available Unused Channel with Void
Filling). LAUC-VF keeps track of all void intervals
(including the interval between the horizon and positive
infinity) and assigns a burst amriving at time r a large
enough void mterval whose starting time si 1s the latest
but still earlier thanr.

This yields a better bandwidth utilization and loss
rate than the Horizon algorithm. However even the best
known mnplementation of LAUC-VF has a much longer
execution time than the Horizon scheduling algorithim,
especially when the number of voids m is significantly
larger than k (which in general 1s the case).

For example, a straightforward implementation of the
LAUC-VF algorithm, described in (Xiong et al., 2000)
takes O (m) time to schedule a burst. The time complexity
becomes O (B m) when there are B different delays a burst
can obtain via the use of FDL's. Searching for a suitable
void interval in this way, might take a longer time than
that is allowed by the offset time of a burst, thus resulting
in a failed reservation.

PROPOSED SCHEDULING ALGORITHMS

In this study, we discuss several efficient algorithms
for selecting chammels for incoming data bursts using
different criteria. The algorithms are based on interesting
techniques from computational geometry.

Modeling the problem geometrically: We view each void
interval Tj as a point with coordinates (s, ej) on a
2-dimensional plane whose x and y axes are the starting
and the ending time, respectively (Fig. 4). In addition,
without considering the use of FDL's, the reservation
period for each data burst b is mapped to a fixed point
(r, f). When there is no ambiguity, we will also use
I[[and b to denote the pomts (s], ej) and (r, f),
respectively.

Since in each void interval, the ending time is always
larger than the starting time, all the void intervals are
mapped to points above the 45 line y = x (Fig. 4). Also the
set Fb of void mtervals feasible to b lies in the unbounded
region R which is to the left of the line x = r and above the
line y = f (Fig. 5) (since each channel can have at most one
void mterval feasible to b the total number of pomnts
inside R 1s at most k).

J. Eng. Applied Sci., 6 (1): 71-78, 2011

A
*
*
*
*
*
*
E #
o
=
= *
=
=
*
>
>
Starting time
Fig. 4: Void intervals map to points
*
*
*

L
£
2
en
.8
'g *
0

v

Starting time
Fig. 5: Feasible region for data burst b

If there 1s no point inside R, 1t means that no channel
is available to the burst b with its current offset time o. In
this case, 1f FDL's are available, one can consider using a
FDL to effectively increase the offset time by a fixed value
and map the requested reservation period to a new point,
say bl in the plane. In case, there are B different delay
times the burst can obtam, the desirable reservation
periods correspond to a set of points b, bl, b2, ... and bB.
All those poimnts are on a straight line y = x+1 (where, 11s
the duration of burst b). The feasible region for a data
burst with the set of (B+1) offset times is bounded by a
staircase curve from below (Fig. 6).

Representative criteria for selecting a channel: We have
proposed scheduling algorithms that can apply several
different criteria to select a channel for an arriving burst b.
The first criterion 1s that for a given offset time to find a
void interval Tj which minimizes the difference between
rand sj among all feasible void intervals, i.e., r-8) = miniFb
(r -s1). We call the feasible interval meeting this criterion
as the mimmmum starting void or Min-SV fit which aims to

74

A

Ending time

v

Starting time

Fig. 6: Feasible region of a data burst b with multiple

offset times
| Channel 0
[| Channel 1
| | []|Channel 2
| |<—vOid—>|_| I]jlfr‘:t] Channel 3
| | | Channel 4
—» Time

Burst arrival time r

Fig. 7. Min-EV schedules the new burst in Fig. 1 to

channel 3
| Channel 0
| | Channel 1
| | Channel 2
[fe—voienf] [] Channel 3
| | New | | Channel 4

burst
—» Time

Burst arrival time r

Fig. 8 Best-fit schedules the new burst in Fig. 1 to
channel 4

achieve the same objective as LAUC-VF (Fig. 3). Figure 5
shows an example where I1 15 the Min-SV fit for b.
Similarly, we can define the mimimum ending void or
Min-EV fit which minimizes the difference between ej and
f(Fig. 5 for an example where I2 13 the Min-EV fit for b
Fig. 7 for another example) as well as their opposites,
Max-SV fit and Max-EV fit, respectively (Fig. 8). Another
criterion 1s called the best fit which finds a void mterval Ij
which mimmizes the following (over all feasible void
wntervals In) mmiFb{(r-si)+(ei-)}. The weighted best fit
finds a void interval to mimmize the following weighted
sum mimFb{(r - s1) + (1 -)ei - D)} for O<<1.

J. Eng. Applied Sci., 6 (1): 71-78, 2011

Algorithm and data structure for the Min-SV fit: Below,
we will describe the method to schedule a burst by finding
a Mm-SV fit which is the point in the feasible region R
(Fig. 2) that 1s closest to the vertical line x = r. This method
can easily be modified to find a Min-EV fit, Max- S5V fit or
Max-EV fit by rotating the coordinate system and/or
reversing the order of searching for pomnts n the
coordinate system.

The data burst query takes a burst b as input and
outputs. The Min-SV interval if such an interval exists.
The interval msertion adds a new interval into the data
structure and the interval deletion removes a interval
away from the data structure. To assign an available
channel to a data burst b, one needs to first perform a
burst query operation to find the Min-SV fit I then a
deletion operation to remove Ij from the data structure and
finally up to two insertion operations to insert up to two
sub-intervals of Tj (called a starting void and an ending
void, respectively) resulting from the channel assignment.
Obviously, all three operations must be performed
quickly.

To build the data structure DSMin-SV, we first sort
the setT of all void intervals by their starting times (this is
done off-lme first and incrementally thereafter) and then
build a balanced binary search tree Tstart based on the
sorted starting times. This 1s accomplished by finding the
interval Tm (called median interval) whose starting time sm
is the median of all the starting times in the considered set
I of intervals. The median interval Im is then used to
partition I into two approximately equal-sized smaller sets
and each smaller set 1s partitioned recursively. All
mtervals in I will be the leaves of the search tree Tstart. A
non-leaf (or internal) node v in the tree corresponds to a
vertical strip Sv in the coordinate system. More
specifically, the root of the tree corresponds to the whole
plane and its two children correspond to the two half
planes induced by the separating line x = sm crossing the
median interval and each half plane 1s recursively
partitioned.

Without loss of generality, the median interval is
assumed to be in the left subtree. Each internal node v is
associated with the following information SV m, pv ymax
and pv ymm where, SV m 15 the median starting time

a’ a

Fig. 9: Allocation nodes and search for Mm-SV fit

among all intervals in Sv, pv ymax is a pointer to the
interval m Sv with the maximum ending time and pv ymin
1s a pointer to the mterval with the smallest ending time
(the last value is used for clean-up operation to be
described later). To perform a burst query on Tstart for a
burst b = (r,), we can use the information stored in the
internal nodes of T start and perform the following
procedure to search for the Min-SV fit.

We first search the tree Tstart to find all points to the
left of the vertical line x = r (some of which may be below
the feasible region). To do this, we start at the root of the
tree and compare r with the median starting time
assoclated with the root. If r 13 larger, we mark the left
child and proceed to the mght. Otherwise, we simply
proceed to the left.

We call the set A of marked nodes allocation nodes
which correspond to vertical regions that contain
intervals or the mtervals themselves whose starting tumes
are no greater than r. The path P from the root of Tstart to
al is called the allocation path. Figure 9 for an example
where P is the dark curve and A is the set of solid nodes.
All the mtervals whose starting time that 1s <r are to the
left of the leaf node reached in the end (ie., a' in Fig. 4).
Thus to find the Min-SV fit for b, it is sufficient to check
the marked leaf node and if needed, then search m the
vertical strips corresponding to the marked non-leaf
nodes. Finally, one can find a random-fit by searching the
region or responding to a randomly selected marked node
(and then if necessary, the regions corresponding to other
marked nodes in a random order).

Scheduling algorithm for the case with FDL's:
Scheduling a data burst with only one fixed offset time
(ie., without FDLs) may fail when there is no feasible void
interval. One way to alleviate this problem is to use FDL's
to effectively increase the offset time (and m turn, shift
the reservation period). Several approaches could be used
to handle the case where there are B different delays that
a burst may obtam via FDL's at a given node: Run the
Min-SV fit algorithm (or its vanation) to schedule the data
burst, starting with the minimum possible delay, until
either the reservation succeeds or fails even with the
maximum possible delay. This approach takes O (B logm)
for scheduling a data burst in the worst case.

Select a set of p(1<p B) different delays and schedule
the burst with any one of these delays in the associated
feasible regions corresponding to the p possible
reservation periods. This approach as to be discussed
next, essentially processes p possible delays m one batch
and has a shorter worst-case (and average case) rurming
time than any previous approach with an appropriate
value of p. The main idea of the second approach which

J. Eng. Applied Sci., 6 (1): 71-78, 2011

we call the Batching FDI. algorithm is as follows. To find
a void interval for an incoming data burst b, the batching
approach first uses either the Min-SV fit or the Min-EV
algorithm to schedule a chammel for b based on the
original offset time (1.e., the offset time without the use of
any FDL's). If such an interval exists then it stops.
Otherwise, a set D = {dl, d2, « « «_ dp} of p delays are
selected and a feasible void interval inside the union RD
of all the feasible regions for the -corresponding
reservation periods 1s sought. To speed up the search, the
scheduling algorithm ne longer looks for the Min-SV fit or
the Min-EV fit. Instead, it reports the first fit 11 found
inside RD by the search algorithm. This first fit may not
require a minimum delay (1.e., the burst may be scheduled
with a smaller delay than that is required by using this
first fit). As long as the delay 1s witlun an upper boun dfor
a burst, mtroducing a non-minimum delay to the burst
may lead to bad overall performance.

Algorithm and data structure for finding the best fit: The
objective of finding a best fit (or weighted best fit) is to
minimize the total length (or weighted length) of the two
void intervals (called starting void and ending void and
denoted by SV and EV, respectively) so as to further
improve bandwidth utility and reservation success ratio.
Unlike the Min-SV fit in which the search criterion
minimizes a distance in one dimension of the coordinate
system (e.g., the starting tume), the best fit criterion
considers the L1 distance (or Manhattan distance) which
1s the sum of a distance in the x dimension and a distance
in the y dimension. Figure 10 where, b = (1,) is the data
burst and T = (s, e);, Below, we show that we can solve the
best fit query in O (log2m) time. Since, the weighted best
fit can be solved similarly by scaling up the y dimension
by a factor of (1 - I/, we will only focus on the best fit. The
data structure DSB for computing the best fit for a data
burst b makes use of the dynamic version of range tree
(Preparata and Shamos, 1985) data s tructure. The
basic idea i3 to construct a randomized balanced binary

A d
*
R % *
*
* L
Q 1, *
£ *
e b
=) -
s *
£
S &)
*
Starting time
Fig. 10: Converting the bent distance to one dimension

76

search tree (Martinez and Roura, 1997) tend based on the
ending time of the void mtervals and for each internal
node v of this tree, build another balanced binary search
tree Tv start based on the starting time for the mntervals in
the strip Sv associated with v only (i.e., not all the
intervals). One can also use the starting time as the
primary dimension.

Different from the normal range-tree, the data
structure does not apply the fractional cascading
technique. This 1s because in OBS networks, the mntervals
are frequently mnserted and deleted from the data structure
and the dynamic fractional cascading technique
(Mehlhorn and Naher, 1990) although, theoretically has
a factor of O (logm log logm) improvement is much more
complicated and practically less efficient than the
relatively simpler data structure. To facilitate the search
of the best fit in this data structure i each node v of the
tree tend, we store the median mterval Iv ym (based on
the ending time) and the mimmum starting (and an
optional mimmum ending time) of the intervals m the strp
Sv and m each node u of Tv start, we store the median
interval Iuxm (based on the starting time) and a peinter pu
pmin to the mterval whose projection distance is the
minimum among all intervals m this subtree of Tv start
rooted at u. To locate the best fit of b m tlus data
structure, we first search on the tree tend. Similar to the
Min-3V fit case, we compute the set A end of allocation
nodes of b in tend.

COMPUTATIONAL COMPLEXITY ANALYSIS

As the burst rates in optical backbone networks are
very high, the scheduling of a burst has to be done very
quickly. To achieve that, parallel computation 1s usually
necessary. In addition, complexity analysis is important
because it offers insights into how various parameters are
best configured. In this study, we will address these
1ssues 1n the context of Ordered scheduling.

The time complexity analysis for the basic and
enhanced versions of the admission control test is as
follows. For basic Ordered scheduling, a processing
element needs to perform at most one comparison and one
update of Noccupied per burst. Therefore, the required
processing time is constant and takes <1 NS assuming a
processing speed in the order of 109 operations per
second. For enhanced Ordered scheduling, the
processing element also needs to perform one comparison
and one update.

In addition, it needs to do the matching operation
when necessary. Assuming that the slot size is smaller
than the mimmuin burst size, the number of elements in
heads and ends i1s M in the worst case. So, the worst case
complexity of the matching operation 1s O (M). Also, the
update of heads and ends at the 2 slots at the 2 ends of a

J. Eng. Applied Sci., 6 (1): 71-78, 2011

burst takes O (log M). Therefore, the overall worst case
time complexity 13 O (1+O (M)+O (log M) =0 (M). Ina
normal case, however the size of heads and ends is about
M/K where K 1is the average number of slots per burst.
Hence, the average complexity is O (M/K) per matching
operation.

The overall average complexity is O (1 HO (M/K)+O
(log M) = O (M/K+log M). Let us consider an example
with M = 256 and K = 16, leads and ends will have about
16 elements on average. A worst case estimate of the
processing time is 50 NS which includes the execution of
match () and remove (t0, t1). The average processing time
is much smaller as match () and remove (t0, tl) are only
executed in heavy loading conditions. The required
number of processing elements is inversely proportional
to the slot size or proportional to the average mumnber of
slots per burst K. Therefore, although basic Ordered
scheduling has the advantage of fast processing
compared to the enhanced version, its drawback is that it
requires a much larger number of processing elements to
ensure good dropping performance. For enhanced
Ordered scheduling, there 1z a tradeoff between
processing speed and hardware complexity.

A small value of K will reduce the required number of
processing elements but will lead to longer execution time
and vice versa. For LAUC-VF, it 1s possible to perform a
parallel search across the wavelengths to find all the
unused wavelengths. Then the search results are
compared to each other to find the latest available one.
These operations can be performed in O (log M) time
which is better than enhanced Ordered scheduling and
worse than basic Ordered scheduling. In terms of
hardware complexity, LAUC-VF requires one processing
element for each wavelength with each processing
element bemng fawly complex. If the number of
wavelengths per link 13 large which 1s usually the case, the
hardware requirement for LAUC-VF will be larger than
Ordered scheduling.

Overall time complexity: The computational work in
admission control and priority queue operations can be
pipe lined. That 1s, as soon as the admaission centrol
routine finishes with a header and passes it to the priority
queue, it can handle the next header wlile the first
header is being en queued. Therefore, the overall
complexity 1s the maximum of the two parts. With parallel
processing, the time complexity for basic Ordered
scheduling 15 O (1). The worst case and average time
complexities of enhanced Ordered scheduling are O (M)
and O (M/K+logM), respectively.

Timing in Ordered scheduling: The timing in an
operationcycle of Ordered scheduling i1s shown in Fig. 11.

77

Node B

Header

\

Fig. 11: Timing diagram for scheduling a burst

At the beginning of an operation when a header
packet arrives at node A, the admission control test takes
tadmit. Tf the burst reservation is successfully admitted,
its header is sent to the next downstream node B while the
reservation object 18 placed in the priority queue
which takes tqueue.

At a suttable time, the object 13 removed from the
queue which also takes tqueue
implementations of the priority queue, enqueue and
dequeue operations take approximately the same amount
of time. Tt takes tNOTIFY to transmit the notify packet at
node A and to receive it at node B. At both nodes, the
optical switching matrices are configured tconfig before
the burst arrival. There is a guard time tguard between the
receipt of the NOTIFY packet and the start of the optical
switch configuration.

This is to ensure that tining variations in various
operations will not cause the NOTTFY packet to arrive late
for the optical switch configuration. One of those timing
variations may result from a large number of burst arrivals
in a short interval.

Without tguard, this could overload the scheduler
and render it unable to make scheduling decisions in time
for optical switch configuration at the downstream node.
From the timing diagram, we can calculate the minimum
time required to schedule a burst under Ordered
scheduling .

We attempt an estimate for TO here. From the
previous section, we have tadmit = 50 NS m the worst
case and tqueue 5 NS. For tconfig according to
(Martinez and Roura, 1997), the Semiconductor Optical
Amplifier (SOA) teclmology can achieve a switching time
tconfig of 1 NS or less. For tNOTIFY, assuming
8-byte NOTIFY packets as in study 3.5, it will take

since for most

J. Eng. Applied Sci., 6 (1): 71-78, 2011

INOTIFY = 6.4 NS to transmit or receive a NOTIFY packet
at 10 Gb/s. Assuming a 10% guard time, the estimate for
TO 18 80 NS in the worst case. With rapid advances in
electronics, we expect the figure to go down significantly
in the near future.

CONCLUSION

In this study, we have presented several novel
channel scheduling algorithms (including Min-SV,
Min-EV, Max-3V, Max-EV, Batching FDL and Best Fit) in
OBS networks using different channel selection criteria.
Unlike existing channel scheduling algorithms, such as
LAUC-VF and Horizon which primarily aim at optimizing
either the running time or loss rate but not both the
algorithms take both performance metrics 1into
consideration and can perform well in networks with or
without FDL. Most of the algorithms have a very shorter
scheduling time for each incoming burst (e.g., worst case
O (logm) time) and maintain a low loss rate. We have
implemented three of the algorithms, Min-SV, Min-EV and
Batching FDI, and comprehensive
experimental study on them under different network
settings (e.g., different channel number, different offered
link load and different offset time range).

conducted a

REFERENCES

Detti, A. and M. Listanti, 2002. Impact of segments
aggregation on TCP Reno flows in optical burst
switching networks. Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and
Communications Societies, June 23-27, New York,
USA., pp: 1803-1812.

78

Hsu, CF., T.L. Liu and N.F. Huang, 2002. Performance
analysis of deflection routing in optical burst-
switching networks. Proceedings of the 21st Annual
Jomt Conference of the IEEE Computer and
Communications Societies, June 23-27, New York,
USA., pp: 66-73.

Martinez, C. and 3. Roura, 1997. Randomized binary
search trees. Research Report of Universitat
Politcnica de Catalunya, T.SI-97-8-R, 1997.

Mehlhorn, K. and S. Naher, 1990. Dynamic fractional
cascading. Algorithmica, 5: 215-241.

Preparata, F. and M.I. Shamos, 1985. Computational
Geometry: An
New York.

Qiao, C.and M. Yoo, 1999. Optical Burst Switching (OBS):
A new paradigm for an optical mternet. I. High Speed
Networks, 8: 69-84.

Turner, I., 1998. Terabit burst switching progress report
(9/98-12/98). Washington University at St. Louis
Technical Report, 1998.

Xiong, Y., M Vandenhoute and H. Cankaya, 2000. Control

burst-switched WDM

Selected Areas Commun.,

Introduction. Springer-Verlag,

architecture 1 optical
networks. IEEE .
18: 1838-1851.

Xu,L., HG. Perros and G. Rouskas, 2001. Techniques for
optical packet switching and optical burst switching.
TEEE Commun. Magaz., 39: 136-142.

Yoo, M. and C. Qiac, 1997. Just Enough Time (JET): A
high speed protocol for bursty traffic in optical
networks. Proceeding of TEEE/LEOS Conference on
Technologies For a Global Information Infrastructure,
August 1997, IEEE Xplore, pp: 26-27.

