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Abstract: Reachability problems of state spaces derived from Petri nets are mainly tackled through structure
analysis of the network and state space analysis of the behavior of the network. Both types of analysis have
been combined in order to cope with their limitations but still the state space explosion in big networks keeps
the margin of impracticability large. Here we use simulation, the third type of analysis technique and present
four partial exploration metaheuristic methods mtended to explore only certain evolutions of the state space
and find the searched state in the fastest possible way (pathwise). The methods adopt some fundaments from
statistical process control and six sigma used in the manufacturing industry and the example presented is

precisely for a manufacturing system.
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INTRODUCTION

In this study we focus on how to cope with one of
the main limitations m the analysis of reachability
problems in models of system behavior called Petri Nets
(PNs). Two types of analysis are mainly conducted by
researchers: structure and state space analysis. Structure
analysis structural  properties, reduction
techniques, traps and siphons properties. State space

mcludes

analysis includes state matrix equation, integer linear
places
Conclusive research have been presented for general PNs
but all of them struggling against the same practical

programining, and transitions  invariants.

limitation; the state space explosion.

On the other hand, one more type of analysis wlhich
15 not so popular among PNs theoreticians exists
simulation analysis. Tt has been mainly used among
practitioners for validation, verification, quantitative
evaluation and visualization of the behavior of the
network and scarcely used for solving reachability
problems. The reason is because despite it uses the same
state matrix equation as in state space analysis, different
rules for solving conflicts in the network are implemented
in order to obtam results on case by case basis, severely
conditioning the generalization of those simulation is
time-consuming and cannot cover all possible scenarios
m the mathematical sense (Ciardo, 2004; Jensen and
Kristensen, 2009). The reachability problem 1s described
as: is the marking m, reachable from the marking m, i.e., is
there an occurrence sequence starting from m, which
leads to the marking m,?
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Analysis of the reachability problem conducted by
the state matrix equation requires the exhaustive
exploration of the entire state space and then the
construction of its reachability graph. A marking m, 1s
reachable from a marking m, if and only if there exists a
path in the reachability graph from the node representing
m, to the node m,, assuming m, # m,. However, working
with reachability graphs 15 difficult if not unpossible when
we face the state space explosion.

This limitation has been tackled by means of
conducting only a partial exploration of the state space
using incomplete or partial graphs and estimated
information in order to come to a conclusion We classify
partial exploration methods in two. The first methods still
explore the entire state space but focus on how to avoid
using a lot of memory by efficiently managing partial

information, like coverability graphs, sweep line
exploration and symbolic state space generation.
The second methods focus on  stochastic

optimization, they incorporate probabilistic elements in
the problem data in the algorithm itself or in both. In
particular, we will focus in a branch of these methods
called metaheunstics (Luke, 2010). These last ones do not
explore the entire state space, omit to visit all states,
ignare which portion of the state space has been explored,
produce unpredicted wrong results and have polynomial
processing time but hold the possibility of not finding the
solution even 1if it exists. The intention of this study 1s to
present four partial exploration methods for the analysis
of reachability problems
Implementing an implosive and sorted exploration

based on metaheuristics.
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approach, we intent to visit only certain states and find
the target marking if it exists by exploring fewer markings
than the conventional searching algorithm or stopping the
exploration at certain conditions when the probability of
finding the target state is low. The methods are implosive
because they takes advantage of the concurrent property
of untimed PNs to avoid visiting some ntermediate
markings and sorted because the methods decide the
direction of the exploration process based on some
characteristics of the current marking, the set of enabled
transitions and the target marking.

The main pomt about the metaheuristics 13 the
assumption about the cardinality of all markings in the
state space and the termination of the method based on
Statistical Process Control (SPC) and 60. In it, we presume
a normal distribution and use some of its parameters to
skip certain exploration directions or stop the search. The
methods have proved effectiveness in finding the target
marking without exploring the entire state space (Serrano,
2010) but failed in selecting the shortest path. In this
study, we show that the combination of two of the
methods can reach the target marking and obtain a shorter
path.

PETRI NETS

Let, P and T be finite and nonempty disjoint sets and
Fc (PxT)u (T xP). An ordinary Petri net % 1s a tuple
(P, T,T,T°, Q) a finite bipartite directed graph where
P=ip, ... pt is afinite and non-empty set of a places,
T={t, ... t,} 18 a finite and non-empty set of b transitions
with(PNT=2)T: (P >xT)=> {01} andI": (T xP)=>{0,1}
are the backward and forward incidence functions and Q
1s a place capacity function P = Z* u {=}. A marking in
the net is a function M: P = Z" u {«}. We say, there are
k tokens mn a place p1f m(p) = k. The mitial marking in the
net is defined as m, and is usually s.t. card (m;)>0, i.e., the
cardinality function (the sum of all tokens in all place) at
the iitial marking 1s >0. And for convenience, the number
of tokens m a place p of a marking m will be described
using the bag-like notation e.g., m = (104) is to m =
1p+ap,.

A transition t, 1s enabled at a marking m 1f Vp € ot,
M(p)2I(p.t.) and vpets, M(p) + I'(t.p)<Q(p). The set B(m)
contains all enabled transitions t, at the marking m and the
powerset E'(m), contains all subsets e of E(m) (all
combinations of enabled transitions at a marking m). The
occurrence (firing) of an enabled transition removes
T(p, t,) tokens and produces new tokens s.t. ¥p € t,o, M(p)
=T'(p, t,). For any set e ¢ E'{m), the notation m[e}m’ will
mean that all enabled transition t, in e may fire at m
vielding m” and e is its representative firing vector. The
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set R.(m,) contains all immediate reachable markings
produced from each string e ¢ E'(m). The state matrix
equation is such that m” = m + e ~(I'- I'). The vector e is a
nonnegative integer solution of the equation if it yields to
m’ and then e 1s a valid string.

The union of valid strings e is called a firing sequence
o and vy 1s the sum of all firing vectors (Parikh vector). The
set R(m,) contains all possible consecutive reachable
markings from m,[o}. A set R(m,) of markings is linear if
any marking produced 1s equal to cm, with ¢>0 and
semilinear if it is the union of a finite number of linear sets.

Enabled transitions t,, t,” are parallel if ImeR(m,) s.t.
it,, t.”YeE(m) and »t, N ot,” = 2, in conflict if # @ and the
string notation [t,, t,”] means their firing is simultaneous.
A path 13 a sequence of elements of P and T starting from
an initial marking (m,), reaching a marking (m,) through a
0., => m,. A path
between markings m, and m, is the shortest path if the

series of finngs, 1.e., m; =2 0, > m, > ...

number of all markings in between 1s mimmum. We poimt
at Murata (1989) for other descriptions about Petri nets.

DISTRIBUTION OF TOKENS AND MARKINGS

Tokens are active entities in a Petr1 net system. The
token game determines the number of tokens to put and
eliminate in every place and their distribution give place
to every marking. We mtent to measure the tokens
difference among any given marking m (including m;) and
a target marking m, because we are interested in how to
fulfill the tokens distribution and difference (tokens
quota) to reach m, We start presenting the first main
assumption in the analysis of reachability problems for a
system (X, m,) and a target marking m,: the cardinalities of
all markings in its state space appear like a probability
density function with normal distribution, mean equal to
the cardinality of the target marking and standard
deviation equal to the absolute value of the difference
between the cardinality of the target marking and the
cardinality of the imtial marking (Fig. 1).

Freq.
A ]
Deadlock 1 Unboundness
L : 3
I
I
I
Card (marking)
'
! 1 |
! : P
m, - 3{m,-m) m, m, + 3(m-m.)
Fig. 1: Distribution of the cardinalities of all marking
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When the difference between both cardinalities is
zero, the default value 1s one. And for the case when card
(m,) — 3||card (m,) — card (m,)|| <1, then the cardinalities of
all markings in a state space appear like a probability
density function with normal distribution and left-side
trimmed at one which limits having zero and negative
markings (Fig. 2).

Binary distance: To establish a point of convergence for
the state progression going from any marking (including
m,) towards the target marking m,, we define the Binary
Distance (BD) between any two given markings m and m,
as:

BD(m,m) = 3 |mp,)-m,p,)

i=1.a

(1)

The Polarized Binary Distance (PBD) is the sorting
element which supports the proposal. It 1s obtained by
removing the absolute value from the Eq. 1. Tts
interpretation is naively given as:

Any positively PBD shows a surplus quota of tokens
in m with respect to m,

Any negatively PBD shows a deficit quota of tokens
inm with respect to m,

APBD =0and BD # 0 means tokens in m = m, (they
are not aligned). We refer to this as quota sigma

A PBD = 0and BD =0 means m = m, We refer to this
as quota zero

Understanding the tokens quota between m and m,
allow us to select among all subsets of E'(m) the firing
vectors which could produce the quota sigma or even
better the quota zero. Consider the system in Fig. 3 with
card (m,) = 2, card (m,) = 3 and the set E(m) = {t;, t;, t;, t,}.
From the set E*(m), the subsets it,, t,} and {t,} evaluate
BD and PBD equal to zero.

Concurrency in untimed Petri nets: Untimed PNs is a

general description for any type of PNs without the

Freq

A
Deadlock Unboundness

1

&

[ e e

Fig. 2: Left-side trimmed distribution
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dependency of time. The lack of this association permits
the theoretical analysis of any unrestricted behavior:
sequential, concurrent, distributed, synchromc, etc. In
this study, we mtent to use it for reducing the number of
explored states in reachability problems. Consider the
system in Fig. 4 with card (m,) = 2, m, = 2p, and the set
E(m) = {t, t, t;}. From the set E'(m) only the subset
{t,, t;} gives a negative mteger solution. Three different
firing sequences are observed in order to reach m, t,t;t,,
tat;ts, [t ]ts.

The subsets {t;}, it} and {t, t;} give different
nonnegative integer solution with marking’s cardmality of
two but conditioned to explore at least one more marking
before the target marking. The sequence m, = t, 2 m, =
t; = m, =2 t, > m, visits two mtermediate markings as well
as the sequence m; = t, 2> m, 2> t, > m, 2> t; > m, Since,
we want to reduce as many as possible the number of
explored markings only the last subset visits one marking
before reaching m,, 1.e., m, = [t;t;] m, > t, > m,

This indicates that sorting of firing vectors alone 1s
not enough, also the proper selection based on the firing
result is important. And one more final though is that the
subset {t, t, t;} which gives a nomnegative mteger
solution 1s another example on how to take advantage of
concurrency. Let us consider the case where m, = 3. We
are looking for firing sequence in any of these forms: t,t,t,,

Fig. 3: PN system with four enable transitions

Fig. 4: PN system with three enable transitions
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titit,, t[tt.], ttts, tt,t,. From the set B'(m), the subset {t,,
t;, t;3 not only gives the desired solution but also is the
one that does not visit any other intermediate markings.

METAHEURISTICS

Summarizing the purpose of this study, we want to
minimize the number of explored states which are not in
the shortest path of states between m, and m, (avoid total
exploration) 1.e.,

MinZ=d+y+t
Where:
¢ = The number of states in the shortest path
vy = The number of states not in the shortest path
T

The number of states visited more than once

For this problem, we observe that not choosing firing
vectors that produce markings with the same cardmality
of the target marking is critical and that linearity in
markings also plays an important role in rapidly reaching

the target marking.
And when m, 1s not a linear marking of m,, stochastic
methods are an alternative worth to explore.

Metaheuristics 1s a combinatorial optimization method
mtended to stochastically optimize problems. It employs
some degree of randomness to find optimal (or as optimal
as possible) solutions to hard problems by iteratively
trying to improve a candidate solution with regard to a
given metric (Ciardo, 2004).

These methods make few or no assumptions about
the problem being optimized and can explore large state
spaces of candidate solutions. However, metaheuristics
do not guarantee an optimal solution i1s ever found.
Metaheuristics will be used here to optimize the search of
a target marking m, if it exists, starting from an utial
marking m,.

Sorting

Problem 1: For a marking m and its set of all enabled
transitions E'(m), find a valid string e such that m[e)m,
where m, = m, or at least m, = m, For this problem,
we define the following generalized sorting pseudo-
code:

Generate the set E'(m)

Obtainthe set R{m) = {m, € R(m,) | m[e}m, Ve € E'(m)}
Delete from R.(m) any marking m, <0

Let set C,(m) = {x £ Z"| x = card{m,) ¥m, € R (m)}
Rest card(m,) to every x € C,(m)

Create List: E* = ||C,|

The first metaheuristic 1s that if there 1s a valid string
e which produces m, = m, or at least m, = m,, it will be the in
list such that list (e) = 0.

416

Selecting

Problem 2: For a marking m, a sorted list of valid strings
e € E'(m) and asubset S ¢ E'(m) with m[s)m,, s € S and
m, = m, find s such that the number of intermediate
markings is minimum. Let us start with the description of
the diamond rule: if m, = t;t, 2 m, and m, = t,t, 2 m,
then m, = m,. There 1s a sorted sublist list contaimng only
the relations of 3 = |C,||. Based on the diamoend list and
the basic addition of firing vectors, the following
instruction must be performed to list:

Letset C(S)= {y € Z'| y = card(s) Vs € 5}

Create list” : 5= |C|

Sort list” in descending order (starting from the
highest)

The wvalid string s with firing vector having the
highest  cardinality the second metaheuristic
approximation to the reachability problem. However,
another possible perspective to the problem 2 1s given as
follows.

i

Problem 3: Finding s such that the number of places
marked in m, which are also marked inm, is maximum. This
problem involves a more detailed vision on a place-by-
place basis. The following instructions must be performed
to list:

Letset C(m) = {z ¢ Z'| numel(m,(p)-m(p) = 0),1=1 ...
a}

Create list” : S= ||C/||

Sort list’ in ascending order (starting from the lowest)

This second valid string s with the firing vector
producing a marking m, with tokens in as many places as
possible as in the marking m, is the third metaheuristic
approximation to the reachability problem.

SPC AND 60

We make use of the already known Statistical Process
Control (SPC) methods used in the manufacture industry
for the control of the searching method. A vast literature
exists about SPC methods therefore, we will briefly
introduce only the concepts used in this research; the
reader can check (Stapenhurst, 2005) or any other
available literatire on SPC and 60 for a deeper
understanding,.

Exploring: For the partial exploration, mn this sstudt we
discuss the following generalized pseudo-code for state
space exploration having the depth-first search algorithm
as the pillar of the pseudo-code.
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let stack.n(1) =1, stack.m(1) = m,, stack.1(1) =1;
letIT=1,7=1;
let ¢ node = stack n(1), ¢_mrk = stack.m(1), ¢_e = stack.1(3);
while ¢_node>0 do §
if ¢ e>0then {
select list’(c_e);
calculate new_mrk;
if new mrk 1s in stack.m then
put new_mrk in stack.m as “not new”;
else { put new mrk in stack.m as “new”,
let ¢ mrk = new_mrk; }}
else { /fcasec_e=0
if prev_node>0 then {
if exist stack.n = prev_node with stack n>0 then
let ¢_mrk = found mark;
else let ¢ node = 0, }
else let ¢ node =0; }
tendwhile.

In addition to the new methods with sorted lists of
firing vectors, there are particular features in the algorithm
which are important to recall.

Enabling of transitions: Petri nets are used to model
systems in various number of application areas and levels
of abstraction. How likely, it is that transitions occur as
singletons or concurrently cammot be quantified without
considering the application area and the level of
abstraction on which a Petri net is built. In the exhaustive
exploration of state space of Petri nets, it is folk
knowledge to use the single-transition firing rule. The
reason 1s because every marking that can be reached by
all simultaneously enabled transitions can as well be
reached through a sequence of single transition
occurrences (Roch and Schmidt, 2006). And while some
researchers propose to forbid structures that lead to
markings only reachable through concurrent firings only
the modeler can judge whether these markings belong to
realistic (Roch and Schmidt, 2006).
Nevertheless, despite both scenarios are realizable after
the implementation of proper control extensions
(Darondeau et al., 2008) (like controlled petri nets) for the
exploration process we allow both types of firings.

$Cenarios

Returning search point and interrupting the exploring:
Another way to classify state space exploration methods
1s as event based (enabling and finng of transitions) and
state based (marking in places). The method we are
presenting in this study falls in the second category
since, we focus on how to reach a tokens quota. For what
1s next, we will use the tokens count to determine when to
return to a previous node to continue the exploration or to
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stop it. In order to avoid the total exploration of the state
space, we determine the termination of the method given
that it 13 improbable to find the target marking mn the state
space with the marking results we are obtaining.

Proposition 1: If Ve ¢ E'(m) and ¥m ¢ R(m,) the firing of
any vector e cannot produce as many tokens as the
cardinality of the target marking then the probability of
finding the target marking is zero.

Problem 4: Find the cardinality of a marking in the state
space R(m,) for which the probability of finding a target
marking m, is lower than «. In statistics, the 68-95-99.7 rule
states that for a normal distribution, nearly all values lie
within 3 standard deviations of the mean. About 68.27%
of the values lie within pto, 95.45% within p+20 and
99.73% within pt30. Taken from SPC, the thresholds at
which any production process output is considered
statistically unlikely are drawn typically at 3 standard
deviations from a center line established from the process
capability (in the case from the cardinality of the target
marking). Then, the probability ¢ of finding the target
marking within p+30 18 99.73%. For the searching process,
the calculation of the exploration limits 1s defined slightly
different since, we only have the initial and target market
information in the form of binary distance.

Upper Limit (UL): We define this limit as the
unboundness level, the point where the number of tolcens
might growth continually and uniformly. Tt is calculated as
three times the bmary distance (between the target and
iitial marking ) over the target marking.

Lower Limit (LL): We call this limit as the deadlock level,
the point where the number of tokens might turn into zero.
It 1s calculated as three times the binary distance (between
the target and initial marking) under the target marking.
The default value of the lower limit is one when the
calculation gives Consider
the following state space reachability problem with
card (m,) = 10 and card (m,) = 12.

The cardinalities of all markings appear like a
probability density function with normal distribution,
mean p = 12 and standard deviation 0 = 2. The upper and
lower limits are 18 and 6 tokens, respectively. This
apparent distribution is seen in the Fig. 5. For this
problem, we define that the probability of finding the
target marking when firing vectors produce markings
with cardinality between 6 and 18 tokens is 99.73%. Now
based on the previously explained limits, we stop the

a value below one.

exploring process at a marking m and return to the
immediate predecessor marking (if the stack 1s not
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empty) when the next pulled firing vector e from list
(m) reaches a marking m, such that: LI<card(m,)<UL.

Visualizing the exploration: We adopt run-chart (or
control chart) from SPC to graphically observe the results
of the exploration process which results very convenient
for depth-first searches. Another purpose will be to
visually recognize the behavior and results of the
exploration process and the state space markings and to
make hypothesis about the structural characteristics of
the net.

Example: The following example is a Flexible
Manufacturing System (FMS) taken to demonstrate the
methods (Fig. 6). The mitial marking s m, =
2Pttt with card (mg) = 6. A target marking
was fixed at m, = ppatpHputptp,s with card (m,) = 6.
The apparent normal distribution of the cardinality of all
markings has mean ¢ = 6 and a default standard deviation
0 = 1. We are looking for a firing sequence aclieving the
shortest path to the target marking with only seven
markings:

m,=[tt,]2m, [ttt ] mD 4, Dm2 [t
s2m 2t ]=2>m> [t,]>m,

Cordinality of markings

Fig. 5: Apparent distribution of markings” cardinality

Fig. &6 Petri net system of a FMS

in order to compare its result with the methods. The

second includes the basic sorting of the firing
vectors.

Fust four different simulations were performed 1n
order to reach the target marking. In the first one, we only
perform a target search with the pure depth-first algorithm
The next one 1s the selection of the vector according to
the problem two. The third one includes the selection by
the problem three. The results of the simulations are
shown in Table 1.

From the simulation results we can observe that all
the three methods exceed the results of the pure depth-
first algorithm. The reason is their capability to engage
concurrent firings to reach the target marking in a faster
way.

However, the methods still fail in finding the shortest
path for reaching the target marking; the obtained paths.
In the run-chart of the simulation of pure depth-first
algorithm (Fig. 7), we can observe several characteristics
about the cardinality of the markings of the state space,
like boundness (the model seems bounded to six tokens).

In order to improve the exploration method, a particular

Table 1: Results of the simulations
Total exploration
Pure depth-first

Target search

37.589119 sec 2.077347 sec
379 registers 72 registers
144 markings 55 markings
235 repeated 17 repeated
Sorted depth-first

92.506132 sec 0.135850 sec
793 registers 13 registers
144 markings 13 markings
649 repeated 0 repeated
Selective-1 depth-first

78.894180 sec 0.955007 sec
793 registers 24 registers
144 markings 21 markings
649 repeated 3 repeated

Selective-2 depth-first

94.099431 sec 0.148233 sec

793 registers 13 registers
144 markings 13 markings
649 repeated 0 repeated
8-
5
44
T T T T T T 1

Fig. 7. Run-char of the FMS
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Table 2: Results of the combined method
Total exploration
Combined depth-first

Target search

92152343 sec 0.133688 sec
793 registers 12 registers
144 markings 12 markings
649 repeated 0 repeated

combination of the three methods was prepared. Tts result
was slightly superior to any of the best results obtained
with an mndividual method of the Table 2. Its superiority
based on the detection of completed token quotas and
weight of the firing vectors is sufficient to believe it can
find shorter paths than any of the individual methods.

CONCLUSION

We presented four metaheuristics for the analysis of
reachability problems in order to minimize the number of
unnecessary explored markings. We observed that a
combination of >1 metaheuritic is necessary in order to
overcome difficulties when selecting the best firing
vector. Due to the information about the required firing
sequence 1s never known in advance, how to take
advantage of concurrent behavior based on heuristic
results will be studied in the future in order to obtain a
better metaheuristic for the reachability analysis problem.
The line of study will be mn the feedback of the cardnality
of found markings in the exploration process in order to
adjust the specification of the upper and lower limit. The
second and mam lme will focus on the combined
metaheuristic method and its usability 1 more general
Petri nets.

One more thing is that after seen the results from the
different simulations, we observe that the proposals could
worl better only for the analysis or reachability problems
and not for total exploration. And despite the main
purpose of the methods was achieved, it is the reduction
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of the number of states explored and registered, the
processing time seems to be compromised as the size of
the models increase. Finally, we believe the searching
method might work better for state spaces belonging to
real-life systems, like a FMS and not for those belonging
to random graphs. The reason 1s because state spaces
which are not from random graphs have several typical
properties which are specific to their structure, like normal
distribution of the cardinality of all markings, making them
more suitable for model checking algorithms (Roch and
Schmidt, 2006).
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