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Abstract: Human lives are full of uncertainties as with many natural phenomena. No one can precisely foresee
what will happen in the next second, minute and so on. The sample realization of a stochastic process are vital
from the point of view of Browman path analysis. A Browmian Motion (BM) with drift zero and diffusion
coefficient, one 15 defined as standard BM whose path properties are used for analysis in several physical and
chemical problems. Rather than accepting the fact that the future is always uncertain, many models and
algorithms have been continuously formulated for the prediction of matters involving uncertain elements. One
of them 1s the Brownian model. In this study, we discuss the enhanced path properties of a one dimensional
standard Brownian motion B(t), t=0 on a complete probability space (Q, IV, P). The law of the iterated logarithm
about how Brownian Motion (BM) oscillates in a neighbourhood of the origin is also discussed.
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INTRODUCTION

The physical origins of the Brownian motion process
suggest that the possible realizations B(t) as the graphs
of the x coordinates of the position of a particle (1.e., the
sample paths) whose movements result from continuous
collisions in the swrounding medium are continuous
functions. A complete description of the path structure of
the BM process can be found by Levy (1965) and Tto and
McKean (1965).

The paths of BM processes may intriguing and
bizarre properties, they are continuous but badly
behaved. We start by showing that the paths are nowhere
differentiable.
probability space is complete which means that all

It is convenient to assume that the

subsets of events of probability 0 are events. This 13 no
loss of generality.

Theorem: Almost every paths of BM are nowhere
differentiable.

Proof: We shall prove stronger results that B (t) has no
point increase or decrease. Fix f>0 and suppose that B (1)
has derivative B'(s), [B'(s) |<B at some point s€[0, 1] then
there is an n, such that for n>n,:
|B(t) - B(s)| < 2bJt - 5| if (1)

t-s8<2/n

Let B(.) denote functions on [0,1]. A={ B(.); there
exists s such that:
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|B(t)f B(s)| < 2b‘tf s| if |t —s| <2Mn}

Then AT Ac {set of all sample paths of B(t) on [0, 1]
having a derivative at any point which is <p in absolute
value}. If Eq. 1 holds and k be the largest integer such
that k/n<s, then the followmg is implied:

(2l
o
OReS

Therefore, if W,= {B(.), at least one Y, <6p/m}, then:
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1 6B n 6R/n s 3
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n n 211_6E,n
1% 3
=n J'e'“}””dy Av=nx) —0
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Therefore, P(a)= lim P(a,)< lim P(W,)=0 which implies
the theorem.

THE VARTATION OF BROWNIAN PATHS

A real valued function f with domain [0, 1] has
bounded variation if it is rectifiable that is the graph has
fimite length. This means that:

sup > |f(t,)— f(t_ )| <o
i=1

Where, the sup 1s taken over all finite partitions of
[0, 1] of the form O<t <t <... <t, = 1 and where we allow n
andt, ... ,t, to vary. A well known result from analysis is
that a function which has bounded variation 1s almost
everywhere differentiable.

Since, we kmow from the previous result that almost
no Brownian Path (BP) is differentiable anywhere, we
conclude that Brownian paths do not have bounded
variation.

Result: Almost no path of BM has bounded variation.
Therefore, almost no path is rectifiable.

QUADRATIC VARTATION

Browman paths are badly behaved continuous
functions. They are neither differentiable nor rectifiable.
In trying to calculate the length of a path B(t), O<t<1, we
choose division points for [0, 1] which we call:

H=J0=t <t <. . <t =1}

Animportant characteristic of the division points 2 is
how far apart any two successive points can be so, we
define:

AlD) = max|‘[k - tk71|

12k=n

Any two successive division points are most A(II)
units apart. To calculate the length of the path, we
compute:
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Zn: Bit,, w)-B{, . w)|

and let A(IT) go to zero. The resulting limit is almost surely
infinite. If A(II) is small, each individual difference
|B(t,, w)-B(t,,, w)| is small by continuity but not small
enough to make the sums converge. If we make the
individual difference samller by say squaring each then
there 18 a chance the limit will be finite. Thus, we define:

QUL w) :Zn: [Bt,, w)-B(, ,, Wi’
k=1

and call Q(IT, w) the quadratic variation of {B(t, w), O<t<1}
over II. If the limit exists as A—0, we call the limit the
quadratic variation of B on [0, 1]. If mstead of [0, 1] we
had taken [0, t] for t>o, then the quadratic variation of B
on [0, t] would be a function of t and hence, a stochastic
process which is called the quadratic variation process. In
the theory of stochastic mtegration, such processes are
umportant as Increasing pProcesses
subtracted from sub martingales to give martingales.

which can be

Quadratic variation processes are also used as random
time change which turn processes constructed from
Browmnian motions using stochastic integration into new
Brownian motions.

Theorem: If 1Y = I*" and A(II*)—0 fast enough, then
almost surely Q(II*)—1 which is the length of the interval
we have decomposed (If instead of decomposing [0, 1],
we decompose [0, t], then the limit would be t). Fancier
versions of this result exist; the present statement and
proof, modeled after the treatment in BM, 1968 are given
because of their simplicity for example, McKean (1969),
Doob (1953) and Karatzas and Shreve (1988). Before
giving the proof, we need to recall the following simple
fact.

Lemma: Let N be a N (0, 1) random variable. Then, the
moment generating function is:
Fe™ — eo@fz, o<y <0,

and;

£l

E(NY) =3

Proof of the theorem: We begin by observation that if:

¥ =0=1t, <t<.<t,=n}
then:
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QUI® K =37 B 1B, )64, )
e

Where, 0, = {|B(t)-B(t_)-(t-t._ )} forms a sequence of
independent, zero mean random variables. Because the
variance of a sum of independent random variables is the
sumn of the variances, we have:

E(QUIY) -1’ ~ E(36,)" = 3¢’

i=1 i=1

SUE (B, B, )2 (B, -

1=1

B(t1.1 ))2 (tl 't1.1 )+(t1 't1.1 )2

Applying Lemma yields:

= Z 3(t1 _t171 )2 _2(t1 _t171 )2 +(t1 _t171 )2)
i=1

=3 204, )0 < 2A(TIO) S (1,4, ) =2A0T9 )1
i=1 i=1

For typographical case, set A= A{(J] % If for
Instance:

A(i)z <
-2
1

where, =20 and then:
PIIQII)- 1> i {2A(TT7)]= PIQMIO 12 ¢, ]
Which by Chebychev’s inequality is bounded by:

L EQU -1’

2
O]
SZA(H ): 261.2 _i
2g 2e1

Therefore;

> PIQUI®»1> 1 ,/2A(H<'>)]<oo

From the Borel-Cantelli lemma, we conclude:

PIIQUI®)-15 (2ATIO) ] i.0.= 0

and for all large i (depending on the sample point w),

QUIYN| < 25 10

as required.

Local maxima and points of increase: In this section, we
prove some results on the irregular behaviour of the
Brownian paths. We start with the following results.

Proposition: as., t—B(w) 13 monotone in no mterval

Definition: Let f: [0, <)»R. A number t>0 is called a point
of local maximum, if there exists a number 60 with
f(s)<f(t), for every s € [(t - 8)", t+ 8]. t is called a point of
strict local maximum if there exists 6 = 0 with {{(s)<f(t) for
every s € [(t- &), t+ 8] {t}.

Theorem: a.s., the set of pomnts of local maximum of the
Brownian path t2B, (w) 13 countable and dense i [0,%0)
and all local maxima are strict. The proof of theorem
depends on the following facts:

¢ Letf: [0,0) 2 R be continuous. Then the set of points
of strict local maximum for f1s countable . Further if £
is monotone in on interval then the set of points of
local maximum 1s dense in [0,)

»  LetX,Y and Z be ndependent random variables and
f: R*=[0, «) be measurable. Then:

Ef(XY.2) = | [EfXy.2)n, (dy)p, (d2)

Where, py (dy) and p, (dz) distributions of Y and 7,
respectively. The proof of first is elementary. The results
in second 18 well known. T o prove it, it is verified first for
indicator functions of measurable rectangles in R’ then for
indicators of measurable sets then for simple functions
and finally for non-negative measurable functions.

Proof of theorem: Because of fact above and proposition
it suffices to show that for almost every Browman path, all
local maxima are strict:

Let A, .., ={w: max B,(w)— max B,(w)= 0}
1 ty St=ty

st by Sty
Clearly, A, 18 measurable as 1s the set A defined by:

A=nAygsu

Where, the intersection 1s taken over all quadruples
of rational numbers (t,, t,, t;, t,) satisfying O<t,<t,<t; <t, .
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Tt is easily verified that if weA then all local maxima of
t—B, (w) are strict. Hence to prove the theorem, it suffices
to show that:

P(A . )=1but max B.(w) — max B.(w) :(B% (w)— B, (w)+

fitaly

min[ B, (w)—B,(w)] + max[B,(w)-B, (w)]

Sty

Where, the three random variables appearing in the
RHS of the above equality are independent. By fact
above:

P(A,,,) = | [PIB, — B, +y+ 27 0], (dy) p,(d2)
Rz

where, 1,(dy) and p,(dz) are the distributions of:

min [ B, - B,]and max[B,- B, |
by St<ty 2 ty Sty 3

respectively. But P [B,-B, +y+Z# 0] = 1. It follows that
Plat, t.t)=1.

The Law of the Tterated Logarithm (L.IL): Khintchine’s

law of the iterated logarithm for BM i1s a very precise
statement about how BM oscillates in a neighbourhood

of the origin:
Leth(t) = \/2t loglogt™

We have the following theorem.
Theorem: For standard BM B(t):

. Bty . .
P[hrrtlﬁupm =1]=1and P[hrglnnf

BO_ oy
h(t)

Remark: The second statements follows from the first.
Since B ()" = - B (), the first result yields:

limsup —BQY =1 almost surely that is
tho  h(t)
—limsup— B =limsup B =—1 almost surely
rho hit) tho (t)

Remark: Khintchine’s law also gives us a LIL near

infinity:
P[]imsup&: ,
tso o 2tloglogt
liminf& =-1]=1

£ 1/2tloglogt -
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This follows from the time reversal property of BM.

We have:
BOt) = B(1/ 1), i.ft>0
0, ift=0
is a BM so, almost surely:
(1)
1=limsup B
wo o h(t)
limsu B/ )

p—
o f2tloglogt™

Lett=1/s so0, s=« we find:

B(s)
limsup——3—=
e 2llog logs
s
=limsup B®) =1 almost surely

s=o 4f2sloglogs

Remark: An important conclusion from the LIL is that
almost all paths B(t, w) of BM pass through 0 infinitely
often in every neighbourhood of zero. Thus, for any >0,
8=0, B(t, w) is infinitely often in the region {(t, y): O<t< 8,
(1-e) hit)<y<(1+=) h(t)} and also infinitely often in the
region {(t, v): O<t<d, -(1+€) hit)<y<-(1-€) h(t)}. Therefore,
the path oscillates near O jumping from being positive to
negative infimtely many times (Fig. 1). We need the
following Lemma for the proof of the theorem.

Lemma: Suppose B is the standard BM. For a0, B0 and
any t=0, we have:

Py (BE) - 2)>pl<e

(1-+€) h(t)
h{t) Infinitely often here

(1+e) hity

~(1-€) h{)

-h(t)
<(1+eyh(t)

jtely often here

Fig. 1: Path osallation
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Proof of the theorem
Part 1: We show:

B(t) _

li

ST
For 0<b<1, 0<d<1, let t, = 6™

=806, 5, = 2nee)
Thus:
2 n
B, = (1+ 8y h (8")
g" 2

_ (1+8)26" loglog 0™
20"

=(1+ 8)20" loglogf™

— log(log e*n)l-ﬁ-ﬁ

o by g=loalog &)

{

_ 1
(log e—n )1+5

1
nlog”

1+6
: J

for a constant K>0 then applying L.emma, we have:

Pl v [B(s)- %] LB, =

1+8
n

TRy [Bls) - 1B ] <0

By the Borel-Cantelli lemma ultimately for all
sufficiently large (depending on w) n:

o, 8
v B - %) <p,
sEt, 2

For such n we have:
v Bs) - el <.
s=t,

Paraphrasing the previous statement, we have:
a,t
v B(s)< B, + =%
sZty,

For such n, te[6", 6™ = [t.... 1), we have:
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t
B(t)< v B)<p, + 2>
55ty

hO,) | (1+8)

2 Y h{(6, 6™
1,048
h{B, )[ 5 ]

Using the fact that h(t) 13 non-decreasing in a
neighbour hood of 0, we get the bound:

<m0[+“*&]

We may conclude that for any 0<6<1 and 0<8<1:

B()
h(t)

(19

hm sup 6

<[

5t g |

Observe that the left side 1s independent of 6 and 8,
so in right side, we let 8l0, 0T1. This gives desired
assertion for part 1.

Part 2: We show:
B(t)

T 2l

h(t)

limsup
tdo

Define independent events:

A, =[B(E")-BE™") = 1-B)h(e")]
Thus:
B(en) _ B(en+1)

P JOT (-8
" 26" loglogo™
> (- J3J_E§T?E_

The random variable:

PA

B(en)_ B(enﬂ)

Jora-o)

is N(0,1). Call the right side of the inequality above x,.
Since B%—eo, we have x,—+eo. Applying Mill’s ratio, we
have:

n(x, )

n

PA, = PIN(0,1)=x, |~

&

2| 4f1-8

2
1 l{ﬂﬂogluge’“]

s

,/log n
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2
1] 140 _
Kexp{——| ———=| (Zloglogt™
pi 2{\/1—_9:|( glogh ™}

\/logn

1-vo

Ji-e

We obtan the lower bound:

Since:

<1

K

Jlogn
— Kr
- nyflogn

We conclude that ¥, Pa, = = and by the Borel-
Cantelli lemma, we get P{A,i.0}=1. Thus, for infinitely
many n, we have:

- e-luglngﬁ’“

B(6")~ B(8™") > (1-/B)h(6™)
or equivalently, B(8")> B(8™")+(1— J@)h(e")

From part 1 of this proof, we have that B(t)<2h(t) for
small t. Since -B(t) 15 also BM, we have that -B(t)= -2h(t).
For n sufficiently large, B(0™")=2h(0™"). For infinitely
many 1

B(6") > (1—~/0)h(6") - 2h(6**")
Thus for infinitely many sufficiently large n, we have:

B(en) i 2h(en+l) R
b N e h(6*)

n+1 —(n+1)
1.8 2 26 loglogei

26" loglog®™
=16 —2,f6(1+ O(1)
>1-4f8 30 =1- 48

=]

The conclusion is that:
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. B(t)
limsup —==1- 4-\/8_
tlo P h(t)

Note that the left side is independent of 6 so that on
the right side we may let 010 to obtain the required result.

Recent developments: Finally, we see a recent theoretical
development. A Brownian path in two dimensions can be
produced from two independent one dimensional
Browmian functions X(t) and Y(t). Suppose, we consider
the range 0<t<T and X(0) = Y(0) = 0. Then the path
(X(t)-(WTHIX(T), Y(t)-(t/'T) Y(T)) begins and ends at the
origin and is called a DBrownian cluster. Visual
comparisons between Brownian cluster simulations and
the coastlines of islands led Benoit Mandelbrot to
corjecture that the periphery of a Browman cluster (the
part can be reached from far away without crossing any
other point of the cluster) has dimension 4/3. This has
been recently proved.

CONCLUSION

In this study, we discussed a theoretical study of the
enhanced path properties of a standard Brownian motion
and the law of the iterated logarithm about how Browman
motion oscillates in a neighbourhood of the origin i.e.,
ZEeT0.
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