Tournal of Engineering and Applied Sciences 5 (4). 332-336, 2010

ISSN: 1816-949%
© Medwell Journals, 2010

A Modified Continuous Genetic Algorithm for Smart Antenna System
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Abstract: This study presents a modified continuous genetic algorithm to optimize the performance of the
smart antenna system. The chromosomes of this modified algorithm are assessed to double crossovers and
blending. Moreover, the first chromosome 18 excluded from the mutation process in order to increase the
algorithm speed. The performance of the proposed algorithm 1s compared with that of two well-kmown adaptive
algorithms, namely; the Recursive Least Square (R1.S) and Sample Matrix Tnversion (SMI). The simulation
results demonstrate that the proposed system has better output signal resolution and smaller mean square error.
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INTRODUCTION

The term smart anterma 1s referred to any antenna
array that can adjust or adapt its own beam pattern in
order to emphasize signals of interest and to minimize
interfering signals.
unportant benefits in wireless applications such as:
providing robustness to system perturbation, reducing
sensitivity to non ideal behaviours, improving system
capacity, as well as separating the received signals
spatially with aid of Space Division Multiple Access
(SDMA) concept (Liberti and Rappaport, 1999).

Smart antennas have wide range of applications
include but not limited to mobile wireless communications
(Liberti and Rappaport, 1999), software radio (Reed, 2002),
Wireless Local Area Network (WLAN) and wireless
metropolitan area network (Stallings, 2000), radar systems
(Skolnik, 1980), satellite communications (Jeng and Lin,
1999) as well as wideband code division multiple access
systems (Ahn and Kim, 2009).

Genetic Algorithms (GAs) have recently found
extensive applications in solving global optimization
searching problems. They have several advantages over
the traditional numerical optimization approaches such as:
optimize with continuous or discrete parameters do not
require derivative information study with a large number
of vaniables and provide a list of optimum parameters, not
just a single solution (Haupt and Werner, 2007). In the last
few years, there were many attempts to use this technique
in electromagnetic applications.

Altshuler and Linden (1997) have designed wire
antermas  using GA by synthesizing the wire
configuration in order to obtain the desired
electromagnetic properties. Edwards et al (1999) have

Smart antennas have numerous

described efficient Method of Moment (MoM) algorithm
to model printed eccentric spiral antennas which is then
run under a GA optimization routine to design antennas
with specific performance attributes. In Choo ef al. (2000)
have optimized the shape of broadband microstrip
antennas using GA without increasing the overall volume
or manufacturing cost of antenna.

Avila et al. (2004) have used GA to optunize the
offset reflector antenna to obtain a uniform radiation
pattern on Brazilian territory. Zainud-Deen et al. (2003)
have calculated the complex excitations of the adaptive
array with aid of MoM and GA to maximize the output
power of the desired signal and minimize the total output
power. Sedaghat-Pisheh et al. (2006) have presented GA
optimization of a broadband coplanar waveguide fed on
chip slot antenna.

Celik and Iskander (2008) have introduced a GA
solution to adjust optimally the beam pattern of the array
elements to mimimize the output power fluctuation in a
given scan range for 60 GHz hybrid smart antenna systerm.
In this study, a special type of GAs named continuous
genetic algorithm is used to adapt the weights of the
adaptive smart antenna. The optimal weights resulted at
each sample of time (iteration) are then used to orient the
main beam of the smart antenna radiation pattern in the
direction of the desired signal and cancel the interfering
signals. As a matter of comparison, the simulation results
of the modified continuous GA are compared with that of
Sample Matrix Tnversion (SMI) algorithm and Recursive
Least Square (R1.S) algorithm. Tn this study, the necessary
equations used to realize and 1dentify adaptive smart
antenna are given. The basic theory of the continuous GA
is also presented. The performance improvement of the
proposed system is shown by simulation results.
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MATERIALS AND METHODS

Smart antenna system: In an M-elements adaptive array
antenna as shown m Fig. 1, output signal v (n) 1s given by
Godara (2004):

y () =w* (n)x(n) (1
where w (n) and x (n) represent the weights vector and
mput signals vector, respectively. The symbol H denotes
the complex conjugate transpose of the vector. It 1s
obvious from Fig. 1 that the signals coming from all
elements at a time instant (n) are multiplied by the complex
weights and summed to form the array output at that
instant of time. A reference signal (r), identical to the
desired signal (s,) 1s used to control the weights of array
elements. If the antenna receives a deswred signal s, (n)
and (K) mterfering signals s, (n) with the presence of
random noise N, then:

x(my=s (n)a, + Zk:sk(n) a, +N

k=1

(2

Where, N is an (Mx1) matrix and a, denotes the
steerng vector of the kth signal given by Godara (2004):
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Where:

(B =271/A) = Represents the wave number

A = Represents the wavelength of the desired
signal

d = The distance between every two adjacent
elements

D, = Denotes the azimuth angle of the kth signal

Continuous genetic algorithm in smart antenna systems:
Continuous GA represents its variables by floating-pomnt
numbers over whatever range deemed appropriate (Haupt
and Haupt, 2004). This technique can be used to optunize
the array output signal by making it approximately the
same as the desired signal. When the direction of the
desired signal is known, the phase of weights can be
deduced from the steering vector of the desired signal a,
as:
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Fig. 1: Simple smart anterma

such that the main beam can be oriented in the direction
of the desired signal. By optimizing the magmtude of the
weights, nulls can be positioned mn the direction of
interfering signals and in this case, the chromosomes
(chrom) of the continuous GA can be expressed as Haupt
and Haupt (2004):

Chrom:le‘ ‘wz‘ ‘WM|:| (5)

The Mean Square Error (MSE) can be used as a cost
function such that:

Cost= ‘r(n)—w“(n) x(n)‘2 (6)

The conventional GA optimization techmque is
usually started by assuming the population size to be
equal to P where P represents the number of
chromosomes 1n the population. Therefore, the mitial
population can be expressed by a (P x M) random matrix
and each chromosome is assessed by the cost function.
The P clromosomes are then ranked from lowest cost to
highest cost.

Only the top chromosomes are kept for mating and
the rest are discarded to malke room for the new offspring.
By choosing the even kept chromosomes as fathers and
the odds as mothers then combine every two parents, a
new offspring will generated.

A crossover between every two parents occurs by
interchanging weights at randomly selected point while
the blending occurs by choosing another randomly pomt
(say m) and changing the weight as (Haupt and Haupt,
2004):

(7
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Where, p 13 a random value between O and 1. Each
mating produces two new offspring differ from their
parents and after these steps the new population should
be rearranged also from the lowest cost to the highest.

In continuous GA, mutation is usually done by
replacing random  weights belong to random
chromosomes with another new random values (Haupt
and Haupt, 2004). However in this study, a modified
continuous GA 18 proposed by excluding the first
chromosome in order to give the best performance.
Therefore, the chromosomes are ranked again from lowest
to highest cost and the number of mutations 1s given by:

No. of mutation = [mutation rate . P. M] (9

The above process continues until an acceptable
cost value is achieved. When the above scenario is
over, the optimum chromosome will be the chromosome of
index 1.

RESULTS AND DISCUSSION

A smart antenna system with six omni-directional
antenna elements (M 6) and a half wavelength
mter-elements spacing 18 considered here to mnplement
the proposed algorithm. The desired signal 1s assumed to
arrive at @, = 40°. It 1s also assumed that one mterfering
signal is received at @, = 120° with the presence of white
noise. If the sampling frequency £, is taken to be equal to
(100f) where f denotes the frequency of the desired signal,
the mstantaneous value of the desired signal can be
written as:

2m,
100

s,(n)= cos(21mf£) = cos( (10)

While the interfering plus noise signal at each
iteration I(n), for 100 iteration is given by (I(n = randn)
where (randn) denotes a MATLAB function that
generates random numbers of normal distribution. The
mstantaneous value of the signal vector 1s then given by:

(1)

x(n)=s (n)a, +I{n)a,

The mstantaneous value of the weight vector can
easily be found from Eq. 4. If the population size P equal
to 8, then the initial population can be set to population =
rand where (rand) denotes another MATLAB function
that generates a uniform random mumbers. According to
the cost fimection given m  Eq. 6, the indices of
chromosomes are rearranged from lowest to highest cost
and four chromosomes are then discarded and four are
kept. The four kept chromosomes are separated nto two
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fathers and two mothers and the mating process starts. In
order to increase the speed of the GA, a double
crogssovers and double blending at random points are
made and the new four offspring are put instead of the
four discarded parents. By choosing mutation rate to be
equal to 20%, the number of mutations is found as 10 by
using Eq. 8.

After mutating the chromosome of the new
population (except the first chromosome), another re-
arranging process is occurred. The cost of the first
chromosome which gives minimwum cost is compared with
a cost margin of 107° If this cost is found to be larger
than the cost margin, a new discarding, mating and
mutation occur.

Otherwise, the first chromosome can be considered
to be the optimum one. As aresults, the optimum weights
vector of the nth iteration can be expressed as in Eq. 4 and
the same scenario is repeated for the (n+1)™ iteration. The
desired signal and the array output signal are shown in
Fig. 2. The two signals are approximately identical for all
iterations. Figure 3 shows the Mean Square Error (MSE)
at each iteration and it found to be less than or equal to
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Fig. 2: The waveform of (a) the desired signal (b) the array
output signal using the proposed GA
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Fig. 3: Mean square error at each iteration using the
proposed GA
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Fig. 6: The desired and array output signals of SMI
adaptive algorithm

107° for all iterations making the array output signal very
similar to the desiwed signal. The resulted normalized
array factor of the last iteration is described in Fig. 4. To
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Fig. 8: The mean square error of SMI adaptive algorithm

reveal the merits of the proposed GA, it is compared
with two well lknown adaptive algorithms, namely; the
Recursive Least Square (RLS) and Sample Matrix
Inversion (SMI) algorithms {(Godara, 2004). Tt s obvious
from Fig. 5 and 6 that the earlier two adaptive
algorithms have bad output resolution compared with that
of the proposed GA. Moreover, these two algorithms
have also high mean square errors shown in Fig. 7 and 8
as compared with the proposed GA.

CONCLUSION

A modified continuous genetic algorithm has been
proposed to optimize the performance of a smart antenna
system by excluding the first chromosome of the
population from the mutating process. Also double
crossovers and blending at random points have been
made to increase the speed of this algorithm. The results
show that the proposed algorithm 1s superior to classical
adaptive algorithms such as RLS and SMI algorithms. It
has mean square error <107 and an excellent resolution
between the desired and output signals.
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