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Abstract: The main focus of the study is to present the mechanism of the orbit in terms of time and position
in a more simplified fashion using Kepler's laws. It also shows the various planes transformation between the
rotating earth and the orbiting satellite. An illustrative location of a satellite 13 also presented. The researchers
use the geocentric coordinate system that has the centre of mass of the earth as the origin of the coordinate
which is the equatorial polar coordinate system where the z-axis extends through the north geographic pole.
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INTRODUCTION

In modem times, Kepler's laws (1571-1630) are used
to calculate approximate orbits for artificial satellite and
bodies orbiting the Sun of which Kepler was unaware
(Timothy and Charlse, 1986) (such as the outer planets
and smaller asteroids).

They apply where any relatively small body 1s
orbiting a larger, relatively massive body, though the
effects of atmospheric drag (e.g., in a low orbit), relativity
(for example, Perthelion precession of Mercury) and other
nearby bodies can make the results msufficiently accurate
for a specific purpose.

Information about the location and movement helps
to receive direct broadcast data from a satellite as 1t
passes overhead. Information on the time at which the
satellite will rise over the horizon helps to direct a
receiving antenna (a satellite dish) at that location. Once
the path the satellite takes through the sky is known, it
enables the ground receiving antenna to track the satellite
and therefore receive data continuously until the satellite
sets at the completion of the overpass.

Dafferent orbits are used for different satellites for
different purposes. A satellite to observe a particular
region of the earth every day at approximately the same
local time each day throughout the annual cycle require a
special orbit with a particular orbital plane precession
different from the one to observe events that evolve

relatively rapidly in time like natural disasters. The various
artificial satellite orbits that are available (Meriam, 1966)
are;

Geosynchronous Orbit (GEQ), 35,786 km above the
earth: Orbiting at the height of 22,282 miles above the
equator (35,786 km), the satellite travels m the same
direction and at the same speed as the earth's rotation on
its axis, taking either 24 h ( for solar day) or 23 h 56 min
4.091 sec (for sidereal day) to complete a full trip around
the globe. Thus, as long as a satellite 1s positioned over
the equator in an assigned orbital location, 1t will appear
to be stationary with respect to a specific location on the
earth. A single geostationary
approximately one third of the earth's surface. If three
satellites are placed at the proper longitude, the height of
this orbit allows almost the earth’s entire surface to be
covered by the satellites.

satellite can view

Medium Earth Orbit (MEO), 8,000-20,000 km above the
earth: These orbits are primarily reserved for
communications satellites that cover the North and South
pole. Unlike the circular orbit of the geostationary
satellites, MEO's are placed in an elliptical (oval-shaped)
orbit.

Low Earth Orbit (LEO), 500-2,000 km above the earth:
These orbits are much closer to the earth, requring
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satellites to travel at a very high speed in order to avoid
being pulled out of orbit by earth's gravity. At LEO, a
satellite can circle the earth mn approximately one and a

half hours.

Orbital mechanism: Orbital mechanics is a subfield which
focuses on spacecraft trajectories, motion ncluding
orbital maneuvers, orbit plane changes and interplanetary
transfers and is used by mission planners to predict the
results of propulsion (Bate ef al., 1971). The motion of
these objects 1s usually calculated from Newton’s law of
motion and Newton's law of universal gravitation that
results in a Kepler orbit.

The orbital equations derived in this study modelled
the earth and the satellite as point masses acted upon
only by mutual gravitational attraction (www . wikipedla.
com/kepler’s laws of plaetary motion). The researchers
shall therefore take the shape of the satellite orbit as an
ellipse (osculating orbit) and it follows from the
mathematics of an ellipse that:

S (1
1+gcosv

Where r and v form the polar co-ordmnates system and
P 1s the semilatus rectum and 1s given as:

h2
oot @)
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Where:
h = A constant called the orbital angular momentum

of the satellite

u = The Kepler’s constant (GM; = 3.9861352E5 km’
sec)

G = The gravitational constant and Mg is the mass of
the earth

€ = The eccentricity of the ellipse

€ ranges between 0 and 1 with the limiting condition
value of 0 in which the ellipse would be a circle with the
earth at centre of it. v ranges between 0° and 180°. When
v 18 0°, the satellite 1s at the perigee (the pomt where the
satellite 13 closest to the earth 13 called perigee) and we
have:

3)

And when v 15 1807, the satellite 15 at the apogee (the
point where the satellite 1s farthest from earth 1s called
apogee) and then we have:
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The arithmetic mean of Eg. 1 and 2 gives the semi
major axis-a;
1

_{L+L}
l+e 1-¢
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Also, the geometric mean of Eq. 3 and 4 gives the
seimi minor axis-b;

b {2 2
+e l-¢
6
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By simple arithmetic,
a_b (7
b p
Combining Eq. 1 and 5, we have:
3(1782) (R)

=
l+ecosv

Equation 8 gives the equation of the orbit. The
rectangular co-ordinates of the satellite from Fig. 1 are:
X =T CO8V, Yy, =rsinvy (N
The general equation relating the orbital period with
the semi major axis, obtain from Newton’s law of gravity
15!
_4n'a’
n

T? (10

y-axis

Circumscribed cricle

Fig. 1: The orbit as it appears m the orbital plane showing
the circumscribed circle
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The orbital period is the time required for the satellite
to complete one revolution and travelled 2m rad
Therefore, the average angular velocity 1s given as:

_In an
1 T

The following expressions are deducted from the
geometry of Fig. 1: x 1s the projection of the planet to the
auxiliary circle then the area:

|zsx|:%\zsp\ (12)
v 18 a point on the auxiliary circle such that the area;
|zey| = |zsx]| (13)

and M = /zcy, where 1s the mean anomaly. The area of the
circular sector is:

™ M

‘zcy‘ =2 from | — x ma’ (14)
2 27

and the area swept since perigee 1s:

a’™ _abM (15)
2 2

b b
‘zsp‘ =—x ‘zsx| =—x
a a

Also, we have E/zcx, where E is the eccentric
anomaly which is related to the radius r by:

r:a(lfscosE) (16)

—a—-r=agcosE (17)

The researchers can now establish the relationship
between M and E according to Fig. 1, where:

|ch| = |ZSX‘ = ‘ZCX‘ — ‘SCX| (1 8)

By substitution, we have:

a’M a’E agxasinE (19)
2 2 2

Dividing through by, a*2 we have:

M=E-exsinE (20)

Also, we have:
M=n(t-t,)=M=nt (21)

When t, 15 zero, the time of perigee. E 1s obtained
from Eq. 19 by an infinite series, given as:
1., 1, 3,
E~M+ 8—§8 SIHM+ES SIH2M+§8 sin3M+ ...

(22)

For the small ¢ typical of an orbit, such series are

quite accurate with only a few terms. We can now relate
v and E. From the geometry of Fig. 1, we have:

axcosE=axg+rxcosv (23)

dividing by a and combimng 1t with Eq. 8 to get:

2

cosE=e+—————xcosv (24)
1+ excosv
— s F = S TEOSV (25)
1+excosv

Equation 24 can be siumplified further using the
trigonometric identity:

tan’ A _ 1-cosA (26)
2 l+cosA
to get;
o 178 Y 27)
2 1+e 2

Equation 1-27 have provided us the neccesary
expressions for the orbital mechanism in terms of position
and time.

Satellite orbital location: At any point in the space, all
the artificial satellites whether in GEO, MEQO or LEO
maintain a specific relationship with the earth as shown in
Fig 1.

Point on the trajectory close to the earth is term
Perigee and that farther away is term Apogee. The orbit
could be termed Geo, Meo or Leo-stationary orbit as the
case may be. But sometimes the orbital plane tilts away
from the equatorial plane. Such orbit 15 known as
synchronous orbit. The relationships
equatorial plane and the synchronous orbital plane are
shown in Fig. 2. The points where the planes intersect are

between the
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Aries plane

Fig. 2: Parameters describing the relationship between the
satellite and the earth

called nodes and the line joining these points of
intersection 1s called the line of nodes, as it connects the
center of mass with the ascending and descending nodes.
For an inchnation between 0 and 90° a satellite motion 1s
towards the east and it 1s called a direct motion. For an
mnclination between 90 and 180 the motion 1s oriented
westward and it 13 called a retrograde motion. Also from
Fig. 2, the coordinates of the earth has its x-axis points
toward a fixed location termed Aries. This is the direction
of a line connecting the centre of the sun and the centre
of the earth at the vernal equinox (about March 21). This
is the instance when the sub-satellite point crosses the
equator South to North (Timothy and Charlse, 1986).

The sub-satellite track defines an imagmary line on
the earth’s surface such as would be traced out by a
straight line drawn from the earth’s centre C to the
instantaneous position of the satellite. When the sub-
satellite track intersects the earth’s equatorial plane, as
the satellite moves from South to North, 1t defines the
location of the ascending node N. The orbit’s inclination,
i is the angle between the plane of the satellite orbit and
the earth’s equatorial plane measured anticlockwise from
the latter. The right ascension of the ascending node € is
the angle measured eastward from the direction of Aries
to the ascending node N.

The angle w, the argument of Perigee, measures the
angle m the satellite’s orbital plane between the
ascending node and the point of perigee P. The satellite’s
mstantaneous position i the orbital plane, the true
anomaly 13 measured by the angle 0 from the point of
perigee in the sense of the direction of satellite motion to
the vector r. The term Mean Anomaly is substituted
mostly for the true anomaly.

Locating the orbital plane with respect to the
equatorial plane involves variables Q and i while the
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location of the orbital coordinates system with respect to
the equatorial coordinates system mvolves variable w.
The satellite coordinates x, v, z, in the orbital plane are
related to the satellite coordinates (x, y, z 1 the
equatorial plane by a linear transformation Timothy and
Charlse (1986) and Marcel ef al. (1997) given as:

4
z,

(28)

But to locate the satellite with respect to a point on
the rotating earth, we need a rotating rectangular
coordinates system (x,, v, z) similar to the geocentric
equatorial system. The coordinates of the satellite in the
rotating system are related to the coordinates in the
geocentric equatorial system by:

colcoem— sin Lcosisin® — cosCsinm— sinQcosicosw sinlsini | %

)

sinisin @ sinicos o cosi

sin Qcos o+ cos Qcosisin @ — sindsin -+ sin Qcosicos® — cos Qsini]

x| |cos(QQT) sin(QT) 0|x
v, |=|-sin(Q.T,) cos(QT,) 0|y, (29)
z 0 0 1|z

14 1

Where € is the angular velocity the rotating system
turns and T, is the elapsed time when xaxis coincided with
the x; exis. The coincidence occurs once with every
rotation of the earth but it does not occur at the same time
every day because of the earth’s motion in its orbit
around the sun. The value of the product Q,T, at any time
t expressed m mimutes after midnight umversal time 1s
given as:

QT, =a,, +0.25068447t degrees (30)

Where o, 15 the right ascension of the Greenwich
meridian at zero hour Universal Time (UT) defined as:

o, , =99.6909833 + 36000.7689T + 0.00038708T” deg rees

(31

And T, is the elapsed time in Julian centuries between

zero hour universal time on Julian Day and noon universal

time on 1st of January, 2000 (Julian day or Julian date 15 a

second dating system used by the Astronomers. The

counting starts at the noon of universal time UT) (Lynch,
2000):

T, =(ID - 2451545)/36525 Julian centuries ~ (32)

The sub satellite Latitude T, in degrees north and
Longitude |, on any quadrant on the rotating earth surface
are;
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L, =90° - cos™ < (33)

z T, V7
(Xr+yr+zr)

-

180° + tan'l{

y‘j, y, 20 and  x >0{first quadrant)
X

¥

s
X

T

=

0 and x, <0(second quadrant )

90° + tam™ | =
yf

w (2]

These parameters:

y, <0 and x_ <O(third quadrant)

Yr

X,

T

y, <0 and  x_ = 0{fourth quadrant)

(34)
mean anomaly (M), right
ascension of ascending node (£2), argument of perigee,
(w) inclination (i), eccentricity (€) and semi major axis
() define an ellipse; orient it about the earth and
the place where the satellite on the ellipse is at a
time relevant coordmnates

particular using  the

transformation.

Location analysis using sample data: The following data
is assumed within the actual range of values to describe
analytically the processes mvolved m locating a satellite
on the rotating earth surface. Tt is assumed that this
information is received at noon UT on the 31st August,
2008,

Eccentricity, € = 0.001

Mean anomaly, M = 118°

Inchnation, 1=1°

Argument of perigee, w =140°

Semi major axis, a= 42164.8 km

Right ascension of ascending node, £ = 84°
True anomaly, v = 117°

Computation
Mean angular velocity 1: From Eq. 10 and 11:
L

B

=1 =7.292071954E - 5 rds ™’

1

a

1
421648

3.9861352E5
42164.8

L
a

Converting this to degree/s, we have 4.178049469E-3

degree s
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Elapsed time since the passage of perigee (t-t): From Eq.

21:
M
(t _tp):F
:(tf tp) 17 =28.003.49801s

© (4.178049469E — 3 /s
=(t—t,)=7h 46 min 43.50 sec

That is perigee passed at 04:14:43.6 UT of 31st
August, 2008 (Howrs: Minutes: Seconds).

Eccentric anomaly E: From Eq. 27:
E Y

= ’1_—8><tan
2 1+¢ 2
than J

B | [ 20001
1+0.001
=E=11692°
Coordinates systems: We can use the value for E to
calculater, the orbital plane radial coordinate, using Eq. 16:

tan

117°
2

r= a(l— ScosE)
= r:42164.8(1— 0.001003116.92“)
= r=42183.89 km

With this we can now transform the polar plane of the
satellite mto a rectangular plane using Eq .9 yielding:

x, =-19151.09 km
v, =37586.12 km

The satellite coordinates in the equatorial plane can
now be obtained using Eq. 28 to get:

X, = 39879.43 km
y, = -51677.93 km
z, = -717.34 km

The coordinates of the satellite in the rotating earth
are related to its coordinates in the equatorial plane using
Eq. 29. First, we need to calculate €, T, from Eq. 30.

The Tulian Day (ID) of noon UT on the 31st August,
2008 15 2454710 (from Julian Day Table). Therefore, the
elapsed time in Julian centuries since noon UT of Ist
January, 2000 T, is obtained from Eq. 32:
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=T, = (2454710 - 2451545) /36525
=T =0.086652977 Julian centuries

Then from Eq. 31, the right ascension of the
Greenwich meridian at zero hour universal time, «,, is
gotten as:

a, , = 99.6909833 + 36000.7689T, + 0.00038708T.
=a,,=3,219.26 degree

Since the midnight UT of 31st August, 2008 is not yet
reached, then from Eq. 30:

Q.T, =0, =3,219.26 degrees

Converting this to numbers of revolution, we have
56.18668648 revolutions. The decimal fraction in degrees
gives the required value of Q, T,. That is:

Q.T,=10.69634727 degrees

Now using Eq. 29, the satellite coordinates in the
rotating earth is:

x, = -5671.52 km
v, = -58181.79 km
z,=-717.34 km

These values show that the coordinates are in the
third quadrant according to Eq. 34. The Latitude T, in
degrees north and the Longitude 1, in degrees of the sub
satellite location on the rotating earth. From Eq. 33:

281

L.=-0.703°N
1,=95.57°

The intersection of these lines gives the point of the
sub satellite pomt on the rotating earth.

CONCLUSION

The orbital mechanism and the location of a satellite
in a rotating earth have been shown in this study. An
illustrative example on how to locate a satellite on a
rotating earth was also presented.
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