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Abstract: Modeling and dynamic analysis of the narrow loom beat-up mechanism is presented. The equations
of motion of the system are formulated considering the influence of the driver cam-follower mechamsm as an
umproved analysis to an earlier study. Numerical results show the mfluence of the mertia forces due to the cam-
follower mechanism. The model tends to account for the torsional and translational transmission of the cam-
follower mechamsm, the contact force of the roller/cam interface, the return spring force and the load acting on
the cam-follower mechanism due to the action of the beater and all the damping, stiffness, mass and inertia of
the mechanism components. The results illustrate that the system response decreases i magnitude as damping
ratio increases in value. High peak values of the magnitudes are obtained at damping ratio <0.700 which is about
the critical damping ratio for this type of system. The damping coefficient requirement for a reasonable control
of the system could be obtained as illustrated by the steady state portion of the system response.
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INTRODUCTION

The beat-up system of a namrow loom 15 a
substructure of the narrow loom mechanism which
generates a DRRD harmonic motion for beating the weft
mnto the yarn during weaving process as reported by Raji
(2000). A cam mechamsm with swinging roller follower has
been design to drive the beater mechanism as detailed by
Raji and Adegbuyi (2003). One of the major factors in the
design and operation of a dynamic system 1s the system
stability and this can be mfluenced by several factors
mncluding the effect of the prime mover on the response of
the driver mechanism for the system, stability analysis of
this kind of dynamic system are discussed by Turhan and
Koser (2004), Liu and Sun (2008), Verichev et al. (2010},
Nieto et al. (2010) and Chen and Zou (2010). Analysis of
the transient response of the beater system as an isolated
systemn had earlier been discussed by Raji et al. (2010).
Their study attempt to control the instability of the
system by introducing a damping element connected to
the beater for purpose of dampening the vibration of the
system which result from the impact loading of the beater
and the mnput torque from the prime mover.

The response was observed to attain a steady state
within determined range of values for the damping
The mput torque was considered as a
continuous turning effect which 1s constantly delivered
on the beater shaft via the swinging roller follower. The
beater system was modeled as an isolated system from the
whole mechamsm neglecting the effect of the possible

element.

disturbances that could be induced by the driver cam
mechamsm of the swinging roller follower and the
reducing resultant torque on the mput shaft due to the
frictional forces, the follower spring forces and the inertias
of the follower and cam.

In this commumnication, we mvestigate the effect of
the cam mechamsm as a separate system on the beater
system for the same narrow loom set-up. The study of this
influence will enable optimal design for the cam
mechamsm parameters such as optimal selection of design
parameters, optimal design of the cam profile, optimal
control of the mechamsm mput speed and optinum
selection of damping element for the beater system.

The motion of the system could be affected by the
stiffness and damping properties of the composition
elements of the cam-follower mechanism. In high-speed
cam mechanisms, vibration of the linkage is harmful in that
the end motion deviates from the required schedule but
more mmportantly, the vibration may result mn the loss of
contact between the cam and the follower. This causes an
increase in noise levels and excessive wear. Thus, for the
narrow loom beat-up system, the rotating features of the
cam mechanism could create disturbance forces and
moments that can contribute to the vibration of the beater
system. The effects of driver mechanism such as the cam
follower mechanism on the stability of systems have been
studied for some time (Fig. 1).

Nagata et al. (2001a, b) developed a recursive
formulation of rigid/flexible systems. The formulation
based on d’Alembert principle mn conjunction with
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recursive kinematical and kinetic expressions, deals with
both space and ground-based mechanical systems. The
formulation generously accounted for arbitrary level of
topological branching, character of the structural
members, slewing, deployment, orbital perturbations, shift
in the center of mass and joint constraints. A dynamic
simulation program was developed to demonstrate the
effectiveness of the model.

Turhan and Koser (2004) studied the stability of the
parametrically excited torsional vibrations of shafts
connected to mechamsms with position-dependent
mnertia. The shafts were considered to be torsional elastic,
distributed parameter systems and discretized through a
finite element scheme. The mechanisms are modeled by a
linearized equation of motion. A simplified mathematical
model was developed to predict the dynamic behavior of
a mechanism. Fed by the cam profile and the parameters
of the mechanism, a computer program yields the output
motion of the mechamsm as well as the contact force
between the cam and its follower.

Kayumov (2006) applied the concept of parametric
controllability to systems of rigid bodies for purpose of
refinement of models by accounting for small variability of
the lmnks assumed by rigid bodies in any first
approximation model. Tt was shown that taking account of
small change in the parameters
controllability of a mechanism which was not controllable
assuming absolute rigidity of the links. L e al. (2007)
developed model for lumped parameter simulation of
dynamic characteristic peristaltic micropumps. The model
was used to perform a systematic analysis of the impact
of geometry, materials and pump loading on device
performance.

Wang ef al (2008) noted the uncertanties in
dynamic model of multibody systems caused by factors
such as the jomnt clearance, friction, lubrication, material

can ensure the
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Fig .1: Schematic diagram of the model mechanism (Raji,
2000)
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non-uniformities and assembly error. A model was
developed to determine the stochastic behavior of model
parameters on the dynamic response of a mechanical
system. Gatti and Mundo (2010) investigated the
feasibility of controlling follower motion by applying a
secondary force directly onto the follower. Simple active
and passive control strategies were mvestigated and
compared to determine the effectiveness and practical
feasibility of the technique.

In this present study, an attempt is made to develop
a model for the namrow loom beat-up mechamsm
considering the influence of the mertia nvolved in the
operation of the driver cam-follower mechanism for the
beater system and the cam-follower transmission effect
across the whole system.

MATERIALS AND METHODS

The improved system model 1s as shown m Fig. 2.
The cam-follower mechanism 1s commected by a shaft to
the beater system. The scheme for the analysis is the use
of lumped-parameters assumption, avoiding the
possibility of spatial dependence of the system’s body
masses with the assumption that the camshaft, cam plate,
follower and the beater slay-bar are rigid. Tt is also noted
that linear displacement of the cam due to motor torque
excitation is possible. The damper b, represent the
damping between the disc-cam and the ground while the
stiffness k, maintain the contact between the disc-cam
and the ground. M, is the mass of the disc-cam, K_ and B,
represents the stiffness constant of the disc-cam and the
damping coefficient respectively. k, 1s the equivalent
stiffness between the roller/follower and the disc-cam,
br; 18 the equivalent damping coefficient between the
roller/follower andthe disc cam. k; maintain the contact

Fig. 2: Model for beat-up system with cam transmission
influence
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between the follower and the ground, by represent the
damping between the follower and the ground. F, 1s the
contact force between the roller and the cam ¢ is the
swinging roller follower pressure angle and k; 1s the retum
spring constant. The spring of stiffness k keeps the
follower always in contact with the cam plate to avoid
bouncing of the follower during operation.

The beat-up system substructure is modeled as
described by Raji et al. (2010). The system modeled as a
torsional system comprises a shaft of torsional stiffness
K,, a beam of mass-moment of inertia J, which represents
inertia body for the beater and slay-bar rotating about the
axis of rotation of the shaft, a beam of mass moment of
mnertia J; representing the combined follower-roller inertia.
Torque T, is delivered on the beater. The system is
damped with a viscous coupling of coefficient, B,. The
corresponding differential equations describing the model
are obtained as expressed in Eq. 1-5:

M.y +by +k.y. =0 (1)
M, ¥; — by +(k, — k )y, =0 2

1.6, — by +(B, + b0, + (K, +kye )0, —
k.0, + FCCOSd)@feﬂ =T, @
L6, + b (0, -0 )+ (k, +K,) )

8, +k,0, —k,0, =0
1,6, + B8, +k, (6,-6,)=0 (5)
Where F_ 1s the contact force expressed as:

ke ©)

F=——
T,Cos(¢)

T;is the total torque of the follower with respect to
point O. This meclude the torque due to the effect of
springs and inertias and could be expressed as; T;=k,,..0,
for an initial displacement of the return spring 6, and

i

equivalent spring stiffness, k.. The pressure angle of the
cam is expressed as;

_ tanfl Yf _ YC _
¢ |:{ e:

9
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The influence of the cam mechanism on the beater
system is explicitly exposed by Eq. 5 which may be re-
expressed as;

8, +200.6, + 20, = ci6, (&)
Where:
=B
= T
and:

are the damping ratio and natural frequency, respectively
for the beater system. The resulting dynamic model 1s a
set non-linear system. Numerical simulation of the
dynamic behavior of the system can be obtained by
solving the system Eq. 1-5.

RESULTS AND DISCUSSION

A numerical example 1s presented to describe the
model performance. It 1s desire that the follower exhibits
the DRRD motion to obey the following equations as is
obtained by Raji (2000):

6,f =1/3[20(,c¢'3-25(,¢" 4+ 8(,c' 5)] 9

Where: ,€=0,c/p

is a dimensionless ratio for a specified follower maximum
rise B. The response was a sinusoidal function which
should serve as mput to the beater dynamic modeled in
Eq. 8 This iz a second-order system subjected to
sinusoidal input and the solution may be best obtained by
Frequency Response Function (FRF) method as follows;

G(s)= (¢b/(¢f = (®¢HT2(ST2 +2(@ins+ oun'2) (10)

The magnitude and phase angle of the FRF may be
expressed as:
. 2(®/on)

11
17((9/(911)2 an

¢ =—tan

A program 1s prepared m the Microsoft excel
environment to generate the Table 1 and 2 for the
magnitude and phase plot of the system. The plots for the
magnitude and phase response of the system are as
shown m Fig. 3 and 4. It 1s observed from Fig. 3 that the
system response decreases in magmitude as damping ratio
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Table 1: Magnitude response
Systemn magnitude response to sinusoidal input

Nommnalized

frequency (/) =01 =03 7=0.5 =07 7=1.0
0.1 0.086 0.071 0.043 0.001 -0.086
0.2 0.347 0.287 0.170 0.000 -0.341
0.4 1.475 1.174 0.627 -0.083 -1.289
0.8 8.091 4.437 1.137 -1.411 -4.297
1.0 13.979 4.437 0.000 -2.923 -6.021
1.2 6.000 1.475 -2.131 -4.794 -7.748
1.6 -4.041 -5.257 -6.984 -8.722 -11.029
2.0 -9.619 -10.187 -11.139 -12.263 -13.979
2.4 -13.596 -13.932 -14.536 -15.308 -16.599
2.8 -16.730 -16.956 -17.374 -17.935 -18.929
3.2 -19.334 -19.497 -19.805 -20.230 -21.015
3.6 -21.570 -21.694 -21.931 -22.265 -22.898
4.0 -23.534 -23.632 -23.820 -24.089 -24.609
4.4 -25.287 -25.366 -25.520 -25.741 -26.176
4.8 -26.872 -26.938 -27.065 -27.250 -27.619
5.2 -28.320 -28.375 -28.483 -28.640 -28.956
5.6 -29.652 -29.699 -29.791 -29.926 -30.200
6.0 -30.886 -30.927 -31.007 -31.125 -31.364
6.4 -32.037 -32.072 -32.143 -32.246 -32.457
6.8 -33.114 -33.146 -33.207 -33.299 -33.486
7.2 -34.128 -34.155 -34.210 -34.292 -34.459
7.6 -35.084 -35.109 -35.158 -35.231 -35.382
8.0 -35.990 -36.012 -36.056 -36.122 -36.258
8.4 -36.850 -36.870 -36.910 -36.970 -37.093
8.8 -37.669 -37.687 -37.724 -37.778 -37.891
9.2 -38.450 -38467 -38.501 -38.550 -38.654
9.6 -39.198 -39.213 -39.244 -39.289 -39.385
10.0 -30.914 -39.929 -30.957 -39.999 -40.086

Table 2: Phase response

System phase response to simisoidal input

Nomnalized

frequency (/o) r=01 =03 =05 =07 =10
0.1 91.157 92,959 94,103 93,468 90,149
0.2 92,386 103.317 107.382 103.774 90,000
0.4 95,440 53.043 17.835 145.318 80.558
0.8 113.959 85.694 T6.645 10.456 160.629
1 0.000 87.530 76.645 90.000 127.773
1.2 61.393 84.128 38.573 130.099 113.561
1.6 78,409 98.985 101.163 101.564 103.079
2 82,406 93.608 95.660 97.220 99,322
24 84.242 92.540 94,126 05.527 97.474
2.8 85.320 92.061 93.387 94.622 96.382
32 86,038 91.782 92.943 94,053 95,659
3.6 86.555 91.597 92.644 93,660 95.143
4 86,948 91.463 92427 93,369 04,754
4.4 87.256 91.361 92.261 93,144 M. 449
4.8 87.506 91.281 92,129 92,965 94,203
5.2 87.713 91.215 92.021 92.817 93.999
5.6 87.888 91.160 91.930 92,693 93,827
6 88.037 91.114 91.854 92,588 93.680
6.4 88.166 91.074 91.787 92,496 93,552
6.8 88.278 91.039 91.729 92,416 93.440
7.2 88.378 91.008 91.678 92,345 93,340
7.6 88.466 90.980 91.633 92,282 93.251
8 88.545 90.956 91.592 92,225 93,171
8.4 88.617 90.933 91.555 92,174 93.008
8.8 88.681 90913 91.521 92,127 93,032
9.2 88.740 20.894 91.490 92.084 92,971
9.6 88,794 90.877 91.462 92.044 92,916
10 88.843 20.862 91.435 92.008 92.864
increases in value. High peak values of the magnitudes critical damping ratio for this type of system. This is an

are obtained at damping ratio <0.700 which 1s about the indication that the system will require an overdamped
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Fig. 4: Bode phase plot for the system response

control method for stability to be obtained. The peak
magnitude is reached at the peak frequency which could
be estimated from the differentiation of the magnitude
expression. The damping coefficient requirement for a
reasonable control of the system could then be estimated.
It also could be observed in Fig. 4 that the system

attained steady state ai normalized frequencies of @ ., ., .
on

CONCLUSION

The present study addresses the need to develop an
accurate model for the response of narrow loom beat-up
mechanism. The mathematical model of the system
structure is realized as a set of non-linear system. The
model tends to account for the torsional and translational
transmission ofthe cam-follower mechanism used to drive
the narrow loom beater system, the contact force of the
roller/cam interface, the return spring force and the load
acting on the cam-follower mechanism due to the action
of the beater and all the damping, stiffness, mass and
inertia of the mechanism components. The model could be
used to predict the dynamic response of such system in
order to be able to evaluate its stability.
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