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Through Three Separated Plane-Parallel Plates in Vacuum
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Abstract: State of polarization of light on reflection and transmission is a subject of change. This change can

be determined by determining the coefficients of reflection and transmission. When coefficients are complex

numbers, we obtain an ellyptic polarization. This phenomenon appears also when the incident light is linearly
or circularly polarized. In this study, the problem of three equally separated plates in vacuum is discussed. The

mcident light 1s considered linearly polarized and with a high degree of coherence. Interference on reflection

and absorption are not taken into consideration. For determination of coefficients r and t, the recursive Wolter's

formulas are used. Formulas for r and t obtained for 1sotropic plates are transformed for amsotropic plates for
special directions of optical axes of crystalline plates. The accuracy of obtained formulas is verified for the case

of a single plate.
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INTRODUCTION

State of polarization of light on reflecton and
transmission is a subject of change (Zander et al., 1983).
In order to determine the state of polarized light, it is
necessary to determine the coefficients of reflection r
and transmission t. Coefficients are complex numbers,
with values not >1. In other words, reflection coefficient
has the form:

v P+ I.Q (1)
K+iL

Whereas, the transmission coefficient, the form:

t= 1_ (2)
K +i1L

In Eq. 2, we take: P =1 and Q = 0. In order to
determme the coefficients r and t, first we must determine
the parameters P, Q, K and L. In the case of only one
boundary surface, coefficients r and t are determined by
Fresnel’s formulas.

In this case, we have to deal with coherent and
linearly polarized meident light. Incident hight has two
components: E,, oscillating perpendicularly to the incident
plane and E, oscillating parallel to the incident plane.
Therefore, these components of light waves, on reflection
and transmission are expressed by equations:

E,=Y,E, E=TE, (3)

and;
E =tE

=t E . B =tE_ (4

Where, E, 15 the incident light. From the Fresnel’s
equation { Borm and Wolf, 1999) for the coefficient r for
this case, we have:

Yp:n‘ cosP, —n,cosp, (3)
n, cosP, + 1, cosf,
. Dy cos B, —n, cosp, (6)

n,cosP, +n, cosp,

We divide both side of Eq. 5 by n,. n, and obtain the
ratios with the same subscripts:
cosP, cosp
S I (7)
FocosP, N cosf,
n, n

In order to simplify the operations further, we take the
substitution (Moser, 1985 ):

cosp
{gp} n (8)
g: =
gn ncosp

Finally, equations for r, and r, have the same terms:
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y=8: " & €))
g, t8
Similarly, for the coefficient t, we have:
fo_ 28y (10)
g +g

In cases when we have =1 plate or more than one
boundary surface, respectively, the coefficient 1 is
determined by recursive Walter’s formulas:

r=2i (11)
"N
1
And similarly, for the coefficient t:
i-1
t :2]Hij=ugi (12)
! N

1

Where j indicates boundary surfaces which in this
case for three i1sotropic plates 13 ] = 6. On the other hand,
B, and N, are determined by:

B, :[(gl 8 )er + (gl t8i ) BJ*‘}COS(')J*1 - (13)

i|:(g1 _grl)NJ—l - (gJ +gJ,I)BJ,1 sing,

N =

1

|:(g1 8 )er + (gl +gr1)BJ*1}COS(pJ*1 + (14)

i[(gl t&i )NJ—l - (gj -8 )Bj,l}sinq)r1

When j = 1, we obtain the Fresnel’s formulas for one
boundary surface. In Eq. 13, 14 for B and N the phase ¢
appears, due to the transmission of light through the
plates and vacuum spaces. The equation for the phase is

(Moser, 1985):
(15)

2n
P, :denj cosp,

Where:
A = The wavelength of incident light

d, = The thickness of the plate which in this case is the
same for spacing in vacuum
n, = The index of refraction of the jth plate

The angle of refraction of light on the exit of the
plates

According to the Eq. 16 for the angle of refraction:

sin o

(16)

sinP=
n

194

The phase angle is written in the form:

_on

o= d”/n]2 —sin‘a

Where « is the angle which incident light covers with
the normal n which 1s given and therefore in the Eq. 17,
the angle of refraction is eliminated.

(17)

MATERIALS AND METHODS

The r and t coefficients for an isotropic plan-parallel
plate for a linearly polarized incident light: Before
determination of B and N for the order | = 6 for three
plates, let we first determine them for two surfaces that 1s
for one plate, respectively (Fig. 1). Surfaces of the plate
are parallel and placed m vacuum. For the boundary
surface vacuum-plate, we take the notation g, and g
for the boundary surface plate-vacuum. In Eq. 13 and 14,
we substitute the values for j = 2 and respective g-s and
determme B, and N, the numerator and the
denominator of reflection and transmission coefficients,
respectively:

B, ~[(g,-g)(g+ 8, )+ (5 - g)e—g.) o+ o
i[(g,8)g+8.) (s, 8)g+g,))sing

(g, +8)(s+8,)+(s, —8)2—8,)]

i[(gn -g)gre)-(g —8)g—g. )Jsin(p

N

2 +

cos @+ (18b)
Finally, for B, and N,, we obtain:

BZ:Zi(gi —gz)sin(p (19a)

N,=4g gcosgp+ Zi(gjfgz)sin(p (19b)

For the reflection coefficient for the surface j = 2, we
obtain the equation of the form:

iO.S{i i}sin(p
¥, = g &
cosq)+iO.5{&+iJsin(p
g 8
2
1

Fig. 1: Surface of one plate
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Then we malke the substitutions:

R_o.s{g—w i} (20)
g 8
and;
R'_o.s{g—ﬂ—ij (21)
g gO

Finally, for the coefficient r,, we obtain:

y, = Rsme (22)
cosp+1Rsing

and for the coefficient t,:

T — (23)
cosp+1R sin¢

We substitute the coefficients r and t in the Eq. 3 and
4 for the parallel and normal components (E, ,). Thus
for the case j = 2, we have determined the parameters of
Eq. 1 and 2 which have the form (Moser et al.,1987):

P.=0 Q,, =R sing (24a)

K, ,=cosp L =R __ sing (24b)

Having determined r and t coefficients for a single
plate, we proceed for a case of three separated plane-
parallel plates (Fig. 2). Thickness and distance between
plates 1s taken to be 1 mm.

Determination of numerator B, in Eq. 11 for j = 6: Now
we will determine the parameters P, Q, K and L for j = 6.
For this purpose, we start from the Eq. 13 and 14 finding
first B, N;, B,, N,, B;, N and B,, N,. Meanwhile, B, and N,
are determined by the Eq. 18 and 19, respectively:

B,=(g—g,)N,{cosqp, +ising, )+ 25)
(g+g,)B,(cosp, —ising, )

Determination of P; and Q;parameters:

P¢6:ReB¢6:732g¢0T ZgT2(g¢oT27gT2) cos' 2 (psin@cos g osingo + 32g¢0T2gT2

4
3
2
1
Fig. 2: Three separated plane parall plates
N,=(g+g,)N,{cosq, +ising, )+ (26)
(g—g,)B,(cosp, —ising, )
B,=(g, —g)N,{cosp+ising)+ 27
(gn +g)B3(cosq)fisin(p)
N,=(g, +g)N,(cosp+ising)+ (28)
(g, —g)B;{cosp—ising)
B.=(g—g, )N, (cosqp, +ising, )+ (29)
(g+g,)B,{cosop, —ising, )
N,=(g+g,)N,{cosp, +ising, )+ (30)
(g—g, )B,(cosp, —ising, )
And for the last surface we have:
B,=(g, +g)N,(cosp+ising)+ 31)
(g, +g)N,(cosp—ising)
Nﬁz(gU +g)N5(cosq)+isin(p)+ (32)

(g, —g)B;{cosp—ising)

Now, substituting in successive manner Eq. 25-32 1n
Eq. 31 and after some mathematical operations, we obtain:

g +g'
Now, we take the real part of Eq. 33 which

corresponds to P; and the imagmary part of Eq. 33 which
corresponds to Q.

(33)

(g¢0T2 - gTZ)SinT 3 pcosg osing,0+ 32,c:‘gg¢o(g¢0T (42ingen parametrave PdheQjeswn Yealed
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Pi6:32gi0¢ 2g¢2(gi0¢27g¢2j(fcosT 2 @singcos @ osing, o+ sin’ 3 (pCos ¢ osing 0 —

cos'2 (Psin Qcos P osing;o — 0.5sin" 3¢pcos @ osin ;o0 + 2cos; 2psinecos ¢
or finally; P, =0 (34)
Whereas, the imaginary part of the Eq. 26 that corresponds to Q; is:
Q, =lmB, =32g}¢* (gﬁ g’ )cos2 psingcos’ g, —32g’g* (gﬁ —gz)sin3 peos’ ¢, —32gg, (gg —gd)COS(pS].IIZ peosg, sing, —32glg’ (gﬁ —gg)cos
After some algebraic operations, we arrive at the form:

Qi6:32gioT ZgTZ(gioT27g?2).(cosT 2 psing cos’ 20— sin¢3(pcosT 20—

cos' 2(p¢osin(psinT 20— 0.5sin 3(psinT Zp0+ 2cos’ 2o Sin(pcosT Zp0+0.55in "3

and now, the equation for Q; takes the form;

2 2 3 3
Q,=05 [gg—°— géJ(siHB(pcosz @, —cos psinpsin’ ¢, ) -05 [2—;— E—ZJ(siansin(psin 29, ) + 0.5{§—§ - E—BJsin3 psin’ g,
(35)
Taking substitutions:

2 2 3 3
R'—O.S{g“gj, s'—o.5[g;gzj, T'—O.S[g;gjj (36)

g g g g g g

for Q; finally we have;

Q= R'(Sin3cpcos2 @, — cos psinpsin’ ¢, )— S'(sin 2qsingsing, )+ T'sin’ psin’ ¢, (37)

Determination of denominator N, in Eq. 11 for j = 6: In a similar way as discussed, substituting in successive manner
Eq. 25-32 in Eg. 32 for N we have:

N, :[4ggu cospcos P, +idgg cospsing, — Z(gi +g2)sin(psincpn - Zi(gﬁ fgz)sincpcosq:uu} (38)

16g’g’ cos” poosq, — 16g7g’ sin’ peose, — 16g0g(g§ +g’ )S

We take the real part of 38 that corresponds to parameter K and imaginary part that corresponds to the
parameter L.

Determination of K, and L, parameters:

cos' 3q)cosT 2¢,0—cos q)sin¢ 2 cos' 20— cos’ 3¢ sin’ 20+

ReN 6=64g o'3g'3 +32g,0'2

cos q)sinT 2(_[)sinT 2p0- cosq)sinT 2q)cosT 2¢p,0 - cos (pSiIlT 2pcos’ 2¢0
or:

ReN, =64g’g’ (00:3:i pcos 2, —3cosesin’ poos 2, — 2cos psin’ @sin’ @, ) +

32g§g2 (gi +g’ )[2(—30052 (sing + sin’ (p)} + 32gug(gz +g' )sin 2psingsin’ P,

[Re N, =64g’e’ (cos3 (p}(cos 2ep, —sin 2psingsin’ g, ) -

32g’’ (gj +g )sin3(psin 20, + 32gug(g2 + g“)sin Zesin @sin’ @,
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For K, we obtain:

ReN,
64g3g3

o

6

After substitution, we have:

s_o.s{g2

Finally, the parameter K, is:

K, =cos3pcos2¢, —sin 2esin@sin’ ¢, — R sin3¢psin 2¢, + Ssin2¢@sin ¢sin’ @,

gﬂ

cos3@cos 2, — sin 2psinesin’ ¢, — 0.5[
g

|0M

|am

2
+ i}siniﬁpsin 2, + 0.5[ =+ g—z}sin 2psingsin’ ¢,
g g aQ

0

d

aQ

+ (39

UQ|UQ

&

(40)

The mmaginary part of the Eq. 33 that corresponds to the parameter L, is:

ImN | 6=064g i0¢3gT3(cos¢ 3¢ 0cosposing o+ cos' 3¢ 0cos @ sing o cosq)sinT 2pcos @ osing0—

cos (pSiIlT 2pcos @ osing,0— cos q)sinT 2pcosgp osin o + cos q)sin¢ 2pcosp

Then, we obtain the equation of the form:

ImN, :64g2g3(cos3(p+ cos psin’ (p) sin2¢, +32g’g’ (gi + gz)(sin3(pcos 2, —sin’ sin’ @, )7

32gng(gz + g4)sin ZpsingsinZe, + 32(g§ g ):3i113(p$iﬂ2 P,

For the parameter I, we have the equation:

3 3
g;w‘i} (1)
g &
After substitution, we have:
3 3
T—0.5[g3+g3} (42)
g :
Finally, we obtain the formula for L
L,= (cos 3¢+ cos ¢psin’ (p)sin 2o, +
(43)

R (sin3(pcos 2, —sin’ @sin2¢, )f
Ssin2¢psingsin2p, + T sin’ psin’ P,

Thus, we have determined the coefficients P, Q, K
and L and therefore, the coefficients r and t for three
parallel plates equally spaced m vacuum, the separation
being equal with the thickness of the plates.

Anisotropic plates: In anisotropic materials-crystalline
plates, light 1s propagated always in two different
directions with different velocity of propagation.
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Therefore, these two waves have different indices of
refraction. Nevertheless, there exist directions in which
the two waves have the same velocity. This direction 1s
the direction of the optical axis of the crystal. Crystals can
have not >2 optical axes and are called uniaxial crystals.
Light wave in a crystal has the ordinary wave denoted by
O and the extraordinary wave denoted by e.

The ordinary wave has the same velocity v, in all
directions and the end of the velocity vector describe a
spherical surface. This wave has the index of refraction n,.
The extraordinary wave has different velocities m different
directions and the end the velocity vector describes an
ellypsoidal surface with the optical axis of the crystal as
a rotation axis (Zander et al., 1985).

Light waves incident on the wuiaxial crystal plates are
linearly polarized and oscillate always in certain planes.
Therefore, it is necessary to define the principal planes.
The principal plane H is determined by the direction of the
propagation of light and the optical axis of the crystal. It
proven that the ordimary wave
perpendicularly to this plane whereas the extraordinary
wave oscillates parallel to this plane. These are essential

18 oscillates

facts that must be taken mto consideration in further
discussion. If we mtent to use mathematical data obtained
for isotropic plates which is possible then we have to deal
with certain positions of the optical axes in relation to the
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crystal swfaces. In particular, we consider the case when
the optical axes of the crystal are parallel to boundary
surfaces of the planes of the crystal. These are the most
appropriate forms for applications but there are also other
cases which we are to discuss.

Optical axes are perpendicular to the surfaces of the
plates: In this case, plates are designed appropriately in
order that their surfaces be perpendicular to the optical
axes and this 1s valid for all plates we will consider. Here,
the optical axis belongs to the incident plane and has the
direction of the propagation of light (Moser, 1988).

Therefore, the principal plane 18 the same as the
mcident plane. According to the definition, the ordinary
wave oscillates perpendicularly to the incident plane
whereas the extraordinary wave oscillates parallel to this
plane. Here, we will denote the perpendicular component-
the ordinary wave by o and the parallel component-
extraordinary wave by e. The phase for the ordmary
component of the wave is:

27
=—:dn_cos
P, =——dn, B,

o

Whereas, the phase for the extraordinary component
of the wave is:

2n
=——dn_cos
¢, = ~dn, P.

The phase for the space in vacuum is:
in
=—dcosa
=

Therefore, for the system of three parallel plates
separated in vacuum, we can use the formulas for the
parameters P, Q, K and I for isotropic plates 34, 37, 40 and
43 and substitute them for the ordinary wave and
extraordinary wave, respectively considering the position
of the principal plane H and the incident plane as defined
before. Therefore, for the parameters P, Q, K and L., for
normal components, we obtain:

P,=0 (44)

s 2 2 ; o2 N
Qn—RD(sm3(p0 cOs” (p— COS” P, SINL P, SIN (p) (45)

S sin 2, sing, sin2q + T, sin” ¢, sin’ @

_ o . .
K, =cos3¢p, cos2¢p—sin 2p, sing, sin’ ¢ (46)
R, sin3¢, sin2¢+ S, sin2¢, sing, sin’ ¢

L, = (cos3g, + 2cos @ sin’ g, ) sin 2+
R, (sin3(p0 cos 2q—sin’ @, sin’ (p) - (47)

S, sin2¢, sineg,_ sin2¢+ T, sin’ ¢, sin, ¢

For parallel components, we have:

P,=0 (48)

_pfia S 2 : RN
prRE(st%q)E cos” ¢p— cos” (@, SN, 51N (p) (49)

S sin 2¢, sing, sin 2¢ + T/ sin’ ¢_sin’ ¢

_ o . Lz
K, =cos3¢p, cos2¢p—sin2¢p, sing, sin” ¢ (50)
R_sin3@, sin2e+S_sin2¢_sing_sin® ¢

L, = (cos3¢, + 2cosp, sin, ¢, )sin 2¢+
RE(sin3(pgcos2(_[)fsin3 (pgsinz(p)f (51)

S,sin2¢, sineg, sin2p + T, sin’ P, sin’ ¢

Optical axes are parallel to the surfaces of the plate and
perpendicular to the incident plane: Figure 3 shows a
crystal plate with the optical axis OA on the plane of the
plate, perpendicular to the incident plane II which
contains the incident beam. This is valid for all three
plates. Incident beam covers the incident angle p with the
normal n.

The principal plane H contains the incident beam and
the optical axis OA. The ordinary beam oscillates
perpendicularly to the plane H and 1s parallel to the
incident plane D so that this beam 1s indexed by O on the
position of the mdex p.

The extraordinary beam e oscillates parallel to the
plane H and 1s perpendicular to the incident plane and is
indexed by O (Zander et al., 1985). Therefore, in the Eq.
44-47, we replace the index o by e for the normal
compornents and in the Eq. 48-51, we replace the index e
by o for the parallel components. Therefore, we have: for
the normal component:

P,=0 (52)

_p! S 2 : R
Q,=R (cos3(p5005 ¢ —cos” @, sing, sin (p) (53)

S sin2¢, sin @, cos’ ¢ + T.sin’ @_sin’ ¢

K., = cos3¢, cos 2¢p— sin 2¢p, sing, sin p— (54)
R_sin3¢_sin2@+3_sin2¢, sin@, sin’ ¢
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L,= (cos 3, + 2cosp, sin’ g, )sin 2+

Re(sin3(pecos2(p—sin3(pe sin’ (p)— (35)
S, sin2¢_sing,_sin 2+ T, sin’ ¢_sin’® ¢
And for the parallel component:
P, =0 (56)
Qp:R'D(sin3(p0 cos’ @—cos’ @, sing, Sinz(p)— (57)
S sin 2q, sing, sin 2+ T, sin’ ¢, sin® @
B L . g
K, =cos3¢p, cos2p—sinle sing sin” ¢ (58)
R, sin3¢, sin 2@ + 8, sin 2, sin ¢, sin’ ¢
L,= (0053(_[)D +2cosq, sin’ @, )sinZ(p +
(59)

R, (sin3(pD0052(pf sin’ ¢, sin’ (p) -

8, sin2q, sing, sin 2@+ T, sin’ @, sin® @

We see from these equation that they differ from the
formulas of the case when the optical axes are
perpendicular to the swfaces of the plates, only in
switching the indices o and e.

Optical axes are parallel to the surfaces of the plates and
have special directions: T.et us discuss the case when the
principal axis H covers the angle y with the plane D as a

4 n
II i
(1]
H
w2
0
]
0A

Fig. 3: Crystal plate with optical axis

(F(Qm@le)):[RpT’ (sin3q)¢o cos' 29— cos’ 2@ 08ing o0 sin' Qq))— S¢0T' sin2@ osing osin2¢+ TloT ('t2ntes equally spacedin vacc

horizontal plane (Fig. 4). The ordinary wave o oscillates
perpendicularly to the plane H, whereas the extraordinary
wave oscillates parallel to the plane H. These waves are
inclined to the plane D.

Therefore, the waves o and are decomposed mto
components that are perpendicular and parallel to the
plane D. For the sake of simplicity, we assume that waves
have unit amplitudes, and therefore, from Fig. 2, for the
ordinary wave o we have:

O, =cosy, O =siny

Whereas for the extraordinary wave e, we have the
components:
e,=siny, e ,=cosy
From these two equations, we see that in the parallel
and perpendicular directions, the ordinary wave o and the
extraordinary wave, both contribute which differs from
previous cases.
Therefore, for systems composed from three plates,
analogously to the previous cases for parameters P, Q, K
and L, we will have equations that contain two projections

{Pﬂj_o (60)
PP

of the components:

Fig. 4: The plane II as a horizontal plane

(F(QLH@ Kip)): (cos3(pi00052(pf sin2(|)psirl(|)iosinT 2¢— R osin3¢ osin 2 + Siosin2q)losin(piosinT 2(p)

(F(cos y@siny)) + (cos3(p¢ecos 24— sin2(_[)¢esinq)¢esin¢ 2p—Res

(F(Lin@LLP)):

(cos3(pio +2cosp0 sin” 2(plo)sin 2+ R0 (si.nS(pLocos 2p— gin’ 30 sin” 2(p) - Slc-T 'sin 2 osing osin 2@+

TiosinT 39,0 sin” 2(Fcosy@siny))+ [(cos 3pe+ Zcos)]
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RESULTS AND DISCUSSION

The accuracy of the Eq. 34, 37, 40 and 43 is verified if
we consider all three plates as a single plate for @, = 0 and
from Eq. 34, 37, 40 and 43 we obtamn the equations of the
form:

P,=0 Q,=R'sin3¢ (6la)

P, =sin3¢ L, =Rsin3¢ (61b)

From Eq. 61, expressions for P, Q,, K; and T, are
proved to be accurate. These are the same as in the case
of e smgle plate Eq. 24 with a tripled thickness d. Also for
the case of amisotropic plates, Eq. 44-51 tumn to be the
same as for a single plate with thickness 3d. Tn this case,
for @ = 0 we have:

p =0

n

Q, =R/ sin3q,

K, =cos3¢, L_=R'sin3q,

3

p =0

P

Q, =R sin3q,
K =cos3p, L,=R'sin3e,

Moreover, coefficients r and t are complex quantities,
showing that reflected and transmitted light has an
elliptical polarization. Values for R*, 8 and T are different
for parallel and normal component. This 1s also valid for
values of R, 3 and T. Therefore, quantities Q, K and L are
determined for normal and parallel component.
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CONCLUSION

Formulas obtained for P, Q, K and L. for isotropic
plates can be transformed for the anisotropic plates as
well but specifying the positions of the optical axis, the
principal plane and the meident plane. As far as, these
parameters were determmed, the determination of the
azimuthal angle 1 of the reflected and transmitted light as
a function of the azimuth of the incident light 1, and the
ellypticity v 18 made possible. Light has a high degree of
coherence.
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