Tournal of Engineering and Applied Sciences 5 (2): 84-90, 2010

ISSN: 1816-949%
© Medwell Journals,2010

Improving Availability Using Mobile Agents in Wireless Networking

Michael Hosein and Aleema Khan
Department of Mathematics and Computer Science,
University of the West Indies, St. Augustine, Trinidad

Abstract: The rapid development of the Internet and networking technologies like 802.11n as well as Gigabit
Ethernet and FTTH and the related technologies have led to an expansion of shared services and resources.
These resources e.g., files can be accessed from desktops, laptops, workstations, pdas, cell phones, televisions
in many cases without regard to location and at very good speeds. Mobile agents can play an important role
n allowing anytime/anywhere access. This study attempts to investigate the use of mobile agents as a means
of improving data availability over a wireless network. Resources were distributed using the static client/server
model as well as the dynamic mobile agent model and the results showed the viability of the mobile agents

approach.

Key words: Mobile agents, availability, wireless networks, data lockers, pervasive computing, Trinidad

INTRODUCTION

The rapid developments in wired and wireless
technologies has helped to facilitate reliable as well as fast
access to data. The study investigates the use of mobile
agents to improve data availability over a wireless
network. This investigation is important in realizing the
full potential of mobile agents as being reliable and
efficient i the transmission of data across a network and
can be applied to the communication of information in
wireless networks where the nature of the communicating
environment 1s more unreliable than that of wired
networks. It 1s hoped that this study would also spur more
attention that 1s needed m this area of research of mobile
agents as a developing trend and technology. The aims
of the study were achieved by allowing mobile agents to
be dispatched across a network and to commumicate
with static agents. The approach was then compared to
a static client/server model.

Computer communications using mobile agents
showed the ability of mobile agents to move around a
network in a much seamless manner compared to other
applications comprising of static models, like the client-
server architecture. This automatic migration of mobile
agents allows them to mnprove the availability of data in
a wireless network. A simulated wireless network was
used in the experiments.

Literature review: Mobile agents are program emntities
that are able to move from one host to another within a
computer network. When mobile agents move around,

they carry code as well as program state. This saving of
the programming state allows the mobile agent to be
transported to another location where its execution can
continue rather than restart. Mobile agents are suitable for
networks since agents can INOvVe across
unreliable or weakly connected networks and reside
elsewhere, possibly on full client nodes.

Many approaches for developng pervasive
services have been proposed and mobile software
agents are more and more seen as an attractive option
(Satyanarayan et al., 2001, Cardoso and Kon, 2002). Many
mobile agents are written in Java and because of the TVM,
they are independent of the operating system or computer
architecture of target nodes. Mobile agents move
independently from the system but in process-migration

wireless

systems, running processes are nstructed when to move
by the system. Mobile agents also differ from applets
which are downloaded based on user interaction and run
to completion on the host device. Mobile agents have
proven to be a better choice for many applications. For
one, mobile agents tend to lead to decreases in network
latency and bandwidth of client-server applications. Also,
they tend to reduce the wvulnerability to network
disconnection and weak connectivity. However, not all
applications will need mobile agents for the entire
duration of execution of their tasks. Mobile agents are
sometimes useful for only part of a process execution.
There have been a number of researches done 1n the
area of mobile agents. Kutila et af. (2009) compare a
mobile agent approach using VERSAG with non-mobile
agent approaches. Arunachalan and Light (2008) describe

Corresponding Author: Michael Hosein, Department of Mathematics and Computer Science, University of the West Indies,

St. Augustine, Trinidad

J. Eng. Applied Sci., 5 (2): 84-90, 2010

AMMA, a mobile agent system for reliable clinical data
mobile messaging. The various advantages that mobile
agents bring to distributed computing scenarios have
been extensively discussed m the literature. It 1s generally
accepted that mobile agents produce less network traffic
in comparison to the client-server paradigm in certain
situations (Picco, 2001 ; Braun and Rossak, 2004). Mobile
agents may prove to be an upcoming teclmology,
however it is not yet perfect. Many researchers are doing
the resaerch on developing better methods for improving
the technology with better programming enviromments
with more standardization and design patterns. As for
security issues such highlighted in Claessens ef al.
(2003), malicious mobile agents may damage local systems
or local systems may capture mobile agents and obtain
private information. They show cases where many open
issues regarding mobile agents and security issues are
areas for further research. On the up side of security
research, study has been done on mobile agents in
secure electronmic transactions (Claessens ef al., 2003),
in patient healthcare within hospitals systems
(Arunachalan and Light, 2008) to just name a few.

MATERIALS AND METHODS

Two models were designed. One model used mobile
agents where the mobile entities traveled across a
simulated wireless network. The other model used a static
client/server application over a simulated wireless
network. The programming language used (Java)
facilitated for the heterogeneity of the network and
operating systems. This ensured for the reuse of the same
source code for other platforms. Two databases were
designed for each prototype using Microsoft Access;
these databases held user information as well as recorded
diagnostic results as programs were executed.

The experiments looked at various design techniques
to improve the availability of data within wireless
networks with the use of mobile agent technology.

The availability of data was determined by comparing
the mobile and static agent application with the
client/server application by obtaining results for the
following criteria in each case:

¢+ Bandwidth used that is the amount of data sent in
kilobytes per ms (milli sec)

* Time taken for storage of files of various sizes

¢ The mumber of transmissions over the networlk for the
storage of files of various sizes

This criteria were calculated withm the code for each
prototype that is the mobile agent prototype and the

85

client/server prototype developed. Two prototypes were
developed, one for a file transfer over a networl: with the
use of mobile and static agents and the second
application used a client/server architecture over a
network. The latter was used to compare it with the mobile
and static based technique. Tn both cases the times taken
for files to be stored over the network were compared.
Bandwidth as well as the number of transmissions of data
sent for each file transfer over the connection were also
compared for both mobile-agent and client-server
prototypes.

The Data Locker technique taken from (Villate ef af.,
2002) was used in the research as an example as to
demonstrate how data can be made more available within
a wireless network. Therefore, this example was used in
order to give a more realistic scenario towards the aims of
the research.

The mobile agent program consisted of mobile and
static agents. The mobile agents travelled across a
simulated wireless network and commumncated with static
agents for the purpose of file transfers. The mobile agents
acted on behalf of the user for file retrieval or storage.
These mobile agents also accessed a database on the
server side, which was used to store the user’s files
(data). Figure 1 shows this mobile agent approach.

The client/server implementation consisted of static
programs that used the method of request/reply form of
communication (Remote Procedure Call (RPC)). This
prototype consisted of programs on the client side and
programs on the server side, where the client side
programs sent or received files from across the network
and the server side storing or retrieving files as indicated
by the user. The server side program accessed a database
consisting of information about the user as well as storing
the user’s files (data). Figure 2 shows the client/server
approach. The platform used to develop the mobile and
static agents was the Aglets Software Development Kit
(ASDK). This was developed at the TBM research
laboratory in Japan. The ASDK provides a framework for

Mobile agent
" migrants

Fig. 1: Mobile agent network load

Request/reply
messages

Fig. 2: Client/server network load

J. Eng. Applied Sci., 5 (2): 84-90, 2010

8 Tanic: The Agiet Viewr [atps/toshiba-user:4434 (aglet._key)

OpionsTos B
=

il e s | e [l con | D [2
mytest.MustaticAgent : Sun Jul 26 20:11:26 BOT 2009

Dispatch :Harjodomo to atp:oshiba-user7000

Fig. 3: Agent running on Tahiti

[Locker Rental Service

File

About Password for Locker-
Password:
T Range of Locker sizes-
[File Transfer

© 10mB
©15MB

O 20mB

Category of Locker to be Rented
[Private Locker
Number of Users:

Submit

[Enter Your Password]

[] Shared Locker

[select users for shared locker - ‘

Edit |

Rate :

"2k mproving Data A... | @ ClentServer Pro...

‘4 start

Fig. 4. GUI for renting a Locker

developing mobile agents which includes Tahiti, a visual
aglet management and monitoring GUI. Figure 3 shows a
screenshot of an agent running on Tahiti. The ASDK is
an environment used for the programming of mobile
agents in Java. Aglets are the names given to the objects
(mobile agents) that move about from host to host. The
Aglet can execute, halt its execution on a host, move to
another host and resume its execution there. Aglets
support strong mobility, this means that the program code
as well as the data move with the agent where ever the
agent goes. For the case of the static client/server model
an interactive GUI was created, the screenshot in Fig. 4
shows one of the option from the GUI. Data was inputted
through the GUI and was stored directly to the database.

[& acreator - [Clent....

[et CiPROGRA~1IX. .

86

[Locker Rental Ser..

The client-server prototype consists of the classes:

Client Driver () gives a Graphical User Interface (GUI)
where the user can input data

Rent Locker () forms the panel for the GUI to accept
the user’s data to rent a locker

File Transfer () forms the panel for the GUI to accept
user data to either store or retrieve a file

Mustatic Agent () creates a connection with the
Server () class and sends the data through
Marjodomo Agent

Marjodomo Agent () user’s request data values sent
to the server are given to Majordomo Agent on
server side and creates Lockerrent Agent

J. Eng. Applied Sci., 5 (2): 84-90, 2010

+ Lockerrent Agent {) given user’s data values from
the Marjodomo Agent.

¢+ Locker Guardian Agent () queries, updates and
inserts into the database with the user’s data, times
taken for data transfers and bandwidth calculation

¢ Server creates a connection to the Mustatic Agent

These classes are named similarly to that of the
mobile-agent prototype but these classes do not have the
features of mobile agents.

The mobile-agents
following classes:

consists of the

prototype

* The MUstaticAgent () resides on the client side, it
also creates the Majordomo Agent and passes the
data to 1t and sends it to the server side

* The Majordomo Agent () 1s the mobile agent used to
carry data as well as it’s code to the server side

¢ The Lockerrent Agent () created by the
Majordomo Agent upon arrival on the server side

is

and the data the Majordomo Agent carries 1s passed
to it

¢+ The Lockerguardian Agent () resides on the server
side and does the insertion of times taken for a store
command, it also copies the file that needs to be
stored. Also inserts the bandwidth calculated for
each file being sent or received

RESULTS

The tests conducted all aimed to show that data can
be made more available with the use of one of the
prototypes. This was accomplished by comparing the
times taken, bandwidth and number of transmissions
across the connection for the file transfer from clent to
server. The less time taken for file transfers showed wluch
technology proved to be better at transferring the data
across the network m less time thus proving itself to be a
more efficient method for file transfers. The bandwidth
calculated showed how much data was sent for each file
per millisecond given differing file sizes, this showed that
a great amount of data can be transmitted in less time so
the data rate showed higher for the more favourable
prototype. The number of transmissions showed how
many times data was sent through each prototype’s
comnection for the time taken in the storing of a file, this
showed that there was less loss of packets or less packet
loss rate for the minimal number of times data 1s sent for
a file storage.

Test 1: Time taken for storing files in mobile-agent and
client-server prototypes: For this test, the sending and
retrieval of 10 files were done 20 tumes for each file. These

87

files varied in size from 10-100 kb and the average times
were measured for these files to get from each prototype’s
client to server mn the case of file storing. For file storing,
the time was calculated using the formula shown where tn
1s time m milli sec:

Average time taken = (t1 +t2 + 3 +td +..._+20)/20

This formula was calculated within the code for each
prototype and stored within each prototype’s database.

Time taken for file storing: Table 1 shows the results
of the average times taken in both mobile-agent and
client-server prototypes for the storing of files. It can be
seen that more time 1s required to store a file using the
client-server prototype. With the mobile-agent prototype
it takes considerably less time than the client-server
prototype to store the same file for every file stored.
Based on the results obtained the following graph
shown in Fig. 5 was plotted using the average times in
milli seconds for each file varying in sizes from 10-100 kb.
As mentioned before, it is clear that the average time to
store the files is less for the mobile-agent prototype than
with the client-server prototype. The average times for
storing of files increased for each prototype as the size of

Table 1: Awverage times taken for storing of files of various sizes for mobile-
agent and client-server prototypes
Average time in milli

Average time in

File seconds (ms) for milli seconds (ms) for
size (kb) mobile-agent prototype client-server prototype
10 57.80 132.85
20 7265 99.65
30 88.25 122.55
40 111.00 183.25
50 146.80 165.45
60 157.05 169.50
70 68.70 163.75
80 136.75 211.40
90 129.85 275.35
100 156.15 23012
3004 —¢ Av. time in milli sec (ms)
for mobile-agent prototype
2504 - Av. time in milli sec (ms)
— for cilent-serer prototype
2 2004
5
g 150+
£ 1004
50
0

207 50 ' 60 ' 707 B0 90 1007
File size (kb)

107 207 30

Fig. 5: Graph showing average times taken for storing of
files of various sizes for mobile-agent and client-
server prototypes

J. Eng. Applied Sci., 5 (2): 84-90, 2010

the file also increased. So with larger files more time will be
taken in both cases. The results here favour the mobile-
agents as opposed to the client-server approach. Despite
the fact that mobile agents travel with their code they are
still able to carry data with them in a faster time than the
client-server approach which relies upon reply/request
messaging.

Test 2: Bandwidth used for storing files in mobile-agent
and client-server prototypes: For tlus test the sending
and retrieving of 10 files were done 20 times for each file,
these files varied in size from 10-100 kb. The average
bandwidth for each file to get from each prototype’s client
to server for file storing was calculated using the formula
shown below where bn is number of bytes of data and tn
15 the time in milli sec. For the average bandwidth
calculations for the mobile-agent prototype the size of the
mobile agent class was mcluded m bn, where the
Majordomo Agent has a size of 2048 bytes, this was done
since this agent travels across the connection thereby
adding to the bandwidth:

Average bandwidth = (b1/t] + b2/42 + b343 + bdit4
+.... 7+ b20/t20)/20

Bandwidth for file storing: Table 2 shows the results of
average bandwidths of both mobile-agent and client-
server prototypes. As shown here the mobile-agent
prototype maintained a higher bandwidth than the
client-server prototype for the storing of files.

Based on the results obtained, the graph shown in
Fig. 6 was plotted using the average bandwidth m bytes
per milli sec for each file varying m sizes from 10-100 kb.
As shown the mobile agent prototype had the greatest
number of bytes transmitted per second for file storing
than the client-server. This proves that the amount of data
transmitted m 1 milli sec for the mobile-agent prototype
was greater than that for the client-server. More data is
being sent across the network means that files with large
sizes such as images, jpegs photos and so on can be
transmitted across in less time. This means that more data
can be made available in a shorter time using mobile
agents, thus proving our data availability issue. However,
the downside to this is the bandwidth consumption of the
commnectiorn, since mobile agents travel with their code as
well this adds to the bandwidth not being conserved.
Thus mobile agents are better suited for connections with

high bandwidths.

Test 3: number of transmissions for storing and
retrieving files in mobile-agent and client-server
prototypes: For this test the sending and retrieving of

Table 2 Average bandwidths for storing files of various sizes for mobile-
agent and client-server prototypes

Average bandwidth used Average bandwidth used
File in milli seconds (bytes/ms) in milliseconds (bytes/ms)
gize (kb) for mobile-agent prototype for client-server prototype
10 242.60 104.00
20 355.90 272.80
30 388.20 308.50
40 440.70 270.50
50 409.55 452,30
60 447.30 463.55
70 1229.20 636.25
80 650.90 495.70
90 784.65 385.65
100 705.35 651.25
- Av. bandwidth in bytes
per milli sec (bytes ms™)
14609 for client-server prototype
- Av. bandwidth in bytes
12009 per milli sec (bytes ms™)

iy for mobik t

E 10004 mobile-agent prototype

g 800+

% 600+

E 400

% 2004

0
10°20"30 40 ' 50" 60 70 80' 90 '100°
File size (kb)

Fig. 6 Graph showing average bandwidth for storing of

files of various sizes for mobile-agent and client-
server prototypes

10 files were done 20 times for each prototype, these files
varied in size from 10-100 kb. The number of transmissions
of data made for the files to get from each prototype’s
client to server for file storing was recorded by the code.
The formula used to determine the average number of
transmissions made for each file is as follows where tm
represents the number of transmissions for a file:

Average no. of transmissions = (tr] +tr2 + tr3 + trd +
oo B 200720

Number of transmissions for file storing: Table 3 shows
the results of the average number of transmissions of data
made in both mobile-agent and client-server prototypes
for the storing of files. As can be seen the number of data
transmissions for the mobile-agent prototype is shown to
be a constant value of 1. However, for the client-server
prototype the number of transmissions increased steadily
as the size of the file increased.

Based on the results obtained, the graph shown in
Fig. 7 was plotted using the average number of
transmissions of data in bytes per milli second made for

J. Eng. Applied Sci., 5 (2): 84-90, 2010

Table 3: Awerage no. of transmissions of data for storing files of various
sizes for mobile-agent and client-server prototypes
Awverage no. of Average no.of

File transmissions of data transmissions of data
size (kb) for mobile-agent prototype for client-server prototype
10 1 10
20 1 20
30 1 30
40 1 40
50 1 50
60 1 a0
70 1 T0
80 1 80
90 1 20
100 1 100
1204 —¢- Av. no. of transmission

g 100] formobiloagent prototype

‘B - Av. time of transmission

‘e s0 for cilent-gerver prototype

la

b

g 47

Z 204

Tl ———————
0 10 ° 20 30 40 ° 50 ° 60 70 " B0 90 ° 100
File size (kb)

Fig. 7: Graph showing average number of transmissions
of data for storing files of vanous sizes for mobile-
agent and client-server prototypes

each file varying in sizes from 10-100 kb. Tt can be seen on
the graph that the number of transmissions for the mobile-
agent prototype for storing files was steady and
significantly less then the client-server prototype. This
proves that the connection for the mobile-agent prototype
was only used once to store the file compared to the
client-server prototype that used the connection more
times as the file size increased. This shows that the
communication load for the mobile-agent was less than
that for the client-server thereby reducing network traffic
considerably. Mobile agents can be used quite efficiently
In getting data across a network, by using less of the
communication protocol.

DISCUSSION

This research supports the idea that mobile agents
could be lead to enhanced performance of network
services like file storage. The deployment of the mobile
agent across a simulated wireless network gave results
that were favourable for data being made more available
than the traditional client-server method.

An observation in the context can be made that data
availability can be improved for wireless networks with
the use of mobile agents. The tests results obtained
showed that mobile agents are quite efficient at

89

transferring data across a network. Tt was also shown that
the migration time or the time taken to store data across a
network was significantly less than that for the client-
server approach. The bandwidth of the transmission for
the mobile-agent approach was far greater than that for
the client-server approach showing that more data can be
sent across the network 1n less time.

The number of transmissions for the mobile-agent
approach was the same for all sizes of files sent as
compared to the client-server approach where the number
increased as the file size increased. Therefore, network
load 1s decreased for the mobile-agent approach as
compared to the client-server approach of multiple
interactions to accomplish a given task.

Given all the above analysis of the results it is clear
that data is indeed made better available across networks
with the use of mobile agents.

CONCLUSION

Mobile agents have proven to be worthy when it
comes to data availability. However, more work needs to
be done in investigating how efficiently mobile agents
and the traditional RPC method of the client/server could
co-operate or go hand in hand m delivering quality
service to the wireless world. The study provides a
starting point for such research.

REFERENCES

Arunachalan, B. and T. Light, 2008. Agent-based mobile
middleware architecture (AMMA) for patient-care
clinical data messaging using wireless networks.
Proceedings of the 12th TEEE/ACM International
Symposium on Distributed Sunulation and Real-Time
Applications, Oct. 27-29, Washington, DC, USA |
pPp: 326-329.

Braun, P. and W.R. Rossak, 2004. Mobile Agents Basic
Concepts, Mobility Models and the Tracy Toolkit.
Morgan Kaufmmann Publishers, San Francisco, CA.,
ISBN-10: 1558608176,

Cardoso, R.S. and F. Kon, 2002. Mobile agents: A key for
effective pervasive computing. Proceedings of the
ACM OOPSLA 2002 Workshop on Pervasive
Computing, Seattle, November 2002. British Columbia,
Canada. http://www.ime.usp.br/~speicys/
publications/oopsla2002 . pdf.

Claessens, I., B. Preneel and J. Vandewalle, 2003. How can
mobile agents do secure electronic transactions on
untrusted hosts? A survey of the security 1ssues and
the current solutions. ACM Trans. Internet Technol.,
3:28-48.

J. Eng. Applied Sci., 5 (2): 84-90, 2010

Kutila, G. S. Krishnaswamy, S.W. Loke and A. Zaslavsky, Picco, G.P., 2001. Mobile agents: An introduction.
2009. Runtime efficiency of adaptive mobile software Microprocessors Microsys.t., 25:65-7 4 o
agents in pervasive computing environments. Satyanarayan, M., 2001. Pervasive computing: Vision and

. . hallenges. IEEE Personal Commun., 8: 10-17.
Proceedings of the 2009 International Conf: |, chasets :) :
foceedings ol the nte ohal L-onteretice on Villate, Y., A. Hllarramend: and E. Pitoura, 2002. Keep your

Pe.rvaswe Services, Tuly 13-17, London, United data safe and available while roaming. Mobile
Kmngdom, pp: 123-132. Networks Appl., 7: 315-328.

90

