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Abstract: A numerical analysis of soil behaviour around pressuremeter probe, based on the generalised
Prager’s model associated to the Drucker and Prager Criterion 1s presented. First of all, the soil behaviour law
18 described, based on the analytical representation of the stress-strain curves obtained with triaxial tests. This
show, how the parameters of the generalised Prager model with a large number of elastoplastic slip elements
associated m series can be identified. Secondly, the effect of these parameters on the sunulated curve and the

principal stresses path around the probe are analysed.
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INTRODUCTION

The pressuremeter is becoming largely used in
geotechnical engineering investigation as a measurement
apparatus to assess the engineering properties of soils.
Both numerical methods and analytical solutions based
on different soil models have been proposed to get shear
strength characteristics and stress-strain properties of soil
from the analysis of the cylindrical cavity expansion
mnduced during the test. The pressuremeter test simulates
the expansion of cylindnical cavity. Due to its well defined
boundary condition, allows more rigerous theoretical
analysis (i.e., cavity expansion theory) than other in situ
tests. In the present study, a numerical analysis of a
pressuremeter test 1s proposed. The generalised Prager
model associated to Drucker and Prager criterion to
describe the behaviour of cohesive soil is presented. The
model is then introduced in a computer code to identify
the model parameters from pressuremeter results. Some
examples identification, parameters effect on the simulated
curve and the stress path around pressuremeter probe are
also presented.

Proposed model: In the numencal theory of plasticity, the
Prager model describes the yielding behaviour of a
material by a yield surface which gives the state of stress
under which yielding first occurs, a work hardening rule
which specifies how the yield surface is changed during
plastic flow and a flow rule which relates the plastic strain
increment to the state of stress and the stress increment.
Iwan (1967) proposed a generalisation of collection of
vield surfaces mn place of Prager’s single model surface.

The model is constituted by a chain of nelastoplastic
Prager elements comected m series. A kinematic
hardening model is supposed. This assumes that during
the plastic deformation, the loading surface translates as
a rigid body in the stress space keeping the size, shape
and orientation of the initial yield surface. The kinematic
hardening has the following form for hardening surface:
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where, k 1s a constant and X are the coordmmates of the
center of loading surface which change as the plastic
strain continues. The simplest version for determining
parameter X;1s to assume a linear dependence of dX;:

dx; = Cde? 2

where, € iz the work hardening constant,
characteristic for given material. Equation 2 may be
taken as the definition of the linear work
hardening. The plastics train is given by  the
normality rule (standard material ):
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The consistency condition means that the yield

surface keeps the same radius, this help to determine the
plastic proportionality factor dA with:

Corresponding Author: Younes Abed, Department of Civil Engineering, Saad Dahleb University, Blida, Algeria



J. Eng. Applied Sci., 5 (2): 50-55, 2010

—dag;
. B )
c, (o Y of
]
Where:
k = Used as a subscript denotes the kth element of

chain
The modulus of the kth element of the chain

The normal external vector to the yield surface

The total plastic strain 1s the sum of the plastic strain
of each cell. Some of them may not be stramed during
loading. In this case, it can be said that they are not
activated. The number of activated cells is n” with O<n"<n.
The model 1s thus defined by the compliance of n elastic
elements and their associated n yield surfaces. Eventually,
a single linear elastic element can be introduced to
represent the initial elastic strain. This, introduce a further
compliance noted I; and a limit surface of threshold stress
S... Thus the model 1s defined by 2n+2 parameters which
can be represented by a discrete spectrum of compliance
as shown on Fig. 1. More ever, the components of the
tensors X, which specify the state of the model must be
given. In the virgin state, all the residual stresses are
equal to zero, hence for each cell, the hardening variables
are also equal to zero, X; (k) = 0. Since each of the n
Prager elements will mdividually obey a linear work
hardemng law, their combined action leads to a piecewise
linear behaviowr with a kinematic hardening for the
material as a whole.

Modelling of (frictional-cohesive soil behaviour
assumptions: The material 1s supposed to be sotropic
and normally consolidated or with low value of the

Ak -1k

Threshold
siresses

D>

Sk

Fig. 1: Compliance spectrum of the model
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Overconsolidation Ratio (OCR). Viscous effects are also
supposed to be negligible which justify the use of an
elastoplastic model as a first approximation.

Yielding criterion: Drucker and Prager criterion is used.

This criterion is a generalisation of Von Mises criterion for
the frictional-cohesive material (Drucker and Prager, 1952):

f=1, +al=K

Where the constants ¢ and K, may be related to the
coulomb’s material constants, C and ¢ n several ways.

(6)

Drucker-Prager material constants: Since the Drucker-
Prager criterion has been established as an approximation
of the Coulemb criterion, it 1s natural to determine the
material constants ¢ and K m the Drucker-Prager criterion
by matching two particular points with those of the
Coulomb criterion and thus expressing the two parameter
o and K i terms of the given Coulomb constants C and
. In the three dimensional principal stress, the Drucker-
Prager criterion can be matched with the apex of the
Coulomb criterion for either point A or B on its n-plane as
shown in Fig. 2. In the former case, the cone circumscribes
the hexagonal pyramid Since a line element (compressive
meridian) connecting the apex O with the point A contains
the same line for both criteria, The relations between ¢, K
and C, ¢ can be found (Chen and Mizuno, 1990):
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Fig. 2: Shape of yield criteria on the m-plane



J. Eng. Applied Sci., 5 (2): 50-55, 2010

6xCcos @

"Ry (8)
\/5(3 —sing)
For a tensile meridian:
2sin @
=" (9
\/5(3 +sing)
6x Ceos @ (10)

\/3(3+sin(p)

Spectrum compliance: The response of this model on a
triaxial path is a polygonal line which can be considered
as a discretisation of the experimental curve. Then, if an
analytical representation of the experimental triaxial test
results 1s chosery, the parameters of the Prager model can
be identified easily. The following relationship proposed
by Olivar: and Bahar (1993) 1s used:

g = —A{ln(l—R)wL(l—zR)lRR} (1)
9,-9,
R:(Glfgi)f 1

Where o, and 0, are the principal total stresses,
(0,-05) 1s the asymptotic value of stress difference which
1s related closely to the strength of the soil and A 15 a
positive parameter defining the curvature. Consequently,
the model 1s totally defined with five parameters; Young’s
modulus E, Poisson’s ratio v, curvature parameter A,
cohesion C and the friction angle .

Response on pressuremeter path: The expansion of
cylindrical cavity (pressuremeter probe) is assumed to
occur in plane strain (€, = 0), when the cavity 1s subjected
to an internal pressure, a small stramn formulation and soil
mcompressibility hypothesis are assumed. The symmetry
of revolution imposes that the stress increments in the
directions of r, 6 and z are principal (Fig. 3). The boundary
conditions can be specified either in displacements or
stresses:

¢ Atthe wall of the cavity:

AU, = AU, and Ag, = Ao, (13a)
*  Ataninfimte distance away:
AU, =0and Ao, =0 {(13b)

Tt can be noted that two concentric annular zones
appear around pressuremeter probe:
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Fig. 3: Equilibrium of a soil element

» In the first zone (r<r<r,), the soil undergo an elasto-
plastic strains
» In the outside zone (r>1,), the soil behaves elastically

Solution of the problem in elastic zone: Taking into
account the radius r, of the outside elastic zone with a
Poisson ratio v = 0.5, what can be obtained 1s as follows:

- ’ (14)
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The deformation happens at constant stress without
volume changes.

Solution of the problem in elasto-plastic zone: The
behaviour law can be written by:

Ag (15)

1] :Al]k1><Ale

Where Ay, describes the soil behaviour for a loading
increment. This matrix 1s function of the stress state and
the loading path. Tt is written as follows:

_ VS s - 16
A, = E+ZS§{G+4JJ(& X, ()8, - X,(k)) (16)

Numerical code: From the analysis of the pressuremeter
test results, a computer code baptised PRESSIO-IDENT
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is developed in order to identify automatically the
parameters of the proposed behaviour law. The simplex
algorithm is used to evaluate the objective function (in
this case, mimmising the area between the experimental
curve and the simulated curve). The proposed code can
be exploited in two ways:

Direct use: Knowing the model parameters, the code
allows the determination of the simulated curve.

Indirect use: From the experimental curve, the code allows
the identification of the model parameters.

Analysis of the parameters effect on simulated curve:
The procedure followed in order to show the effect of the
model parameterson the simulated curve was by
considering the sensitivity of every parameter. For this,
the use of the numerical code (computation of the
pressuremeter curve knowing the parameters of the
model) allows to get a simulated pressuremeter curve. To
carry out this analysis, the experimental pressure meter
curve carried out on the doughy chalk of Nogent (France)
at the depth of 12.50 m has been used.

The parameters for this analysis are shown
Table 1. Every parameter has been varied by £50% of its
mitial value keeping constant the three others. Table 2
shows the obtained results as well as the area
corresponding to the variation of every parameter. This
area is delimited by the curve deduced from initial
parameters and the curve deduced from the varied
parameters.

Young modulus effect: The strain parameter E (Young
modulus) has an influence mainly in the first part of the
curve. Nevertheless, what can be seen is that the great
strains part of the simulated curve are slightly mfluenced
by this parameter (Fig. 4).

Curvature parameter effect: The parameter which
describes the curvature of the simulated curve has almost
no influence on the cwrve particularly on its starting part
(Fig. 5).

Table 1: Parameters of the doughy chalk of Nogent (France) at the depth of

1250 m
Py (kPa) Vp(em’)  E(kPa) A C (kPa) @)
104 84 12000 0,030 150 20
Table 2: Effect of the model parameters on the simulated curve

Variation of the generated area surface (99)

Parameter variation E A C ©
- 50% -33.70 -2.80 -37.88 -31.21
+50% +12.43 +3.90 +20.79 +20.75
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Failure parameters effect: The two failure parameters, the
cohesion (C) and the friction angle (&) representing the
behaviour in great strain have a negligible mfluence on
the mitial part of curve. However, thus mfluences seem to
be more pronounced within the last part of the pressure
meter curve where the failure occurs (Fig. 6 and 7). This
analysis shows that none of the three parameters of the
model can be set with an average value, the three
parameters have to be determined by the proposed
optimization method.

Initial values of parameters to identify: The knowledge of
the experimental curve allows evaluating the model
approached parameters using the classical methods

3007 _ & - Experimental curve
— Referential curve
..... S0%A
w0 +50% A
Fa
g
é" 300+
E 200
=2
100 |
0 T T T 1
0 200 400 600 300
young modulus effect (E)
Fig. 4: Young modulus effect (E)
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Fig. 5: Curvature parameter effect (A)
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Fig. 7: Cohesion effect

(Salencon, 1966). These parameters allow starting the
iteration process which will lead to the finale parameters.
Figure 8 shows an identification example of the model
parameters. The simulated cwrve deduced from the
injected 1mtial parametersis very close to this final one.
This shows the importance of the imtial solution in the
proposed process of identification.

Stresses path around pressuremeter: The proposed
method allows visualising stresses path in all the pomt of
a chosen discretisation. Figure 9 shows the distribution of
the main stresses at the end of loading for the pre-boring
pressuremeter test undertaken on the Nogent doughy
chalk in France (Pre Boring Pressuremeter probe; R = 8 cm
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Fig. 9: Distribution of main stresses at end of loading

and L = 32 cm). Three different areas of soil from the
borehole wall to the infinite radius are considered.
Plasticity appears between the radial stress o, and
circumferential stress 0, in the horizontal plane.
This first plastic area extends between the radius a
(borehole wall) and b (external radius of the
plastic area).

As shown by Wood and Wroth (1977) and Monnet
(2007), plasticity may also appear in the vertical plane
between the vertical stress 0, and circumferential stress o,
in an area between the radius b and radius ¢ (external
radius of both plastic areas). An elastic area extends

beyond the radius b.
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CONCLUSION

The proposed model derived from the Prager model,
developed in its original version to describe the behaviour
of clays is generalized to the coherent scil. Tts
generalisation to the coherent soil can be carried out by
using the Drucker and Prager criteria. Because of the
limited number of parameters introduced, this model can
practically do well with a more or less random choice of
other parameters intervening in other behaviour laws
which the pressuremeter test canmot identify. The strain
parameter E (Young modulus) has an mfluence within the
first part of the curve (left small strain). Nevertheless, It
can be noticed that the great strains part of the simulated
curve are slightly influenced by this parameter. The
parameter which describes the curvature of the sumulated
curve has a negligible influence on thecurve particularly
on its first part. The two failure parameters have an
unportant effect on the sumulated curve in particular on
the great strams part of curve. The offered model 1s
currently in development status to be able to describe
cycles of unloading re-loading, thing which is going to
allow us derive the 1mtial elastic modulus. The distribution
of main stresses at the end of loading shows that the
plasticity may occur between between the radial stress o,
and the circumferential stress 0, and between the vertical
stress o, and the circumferential stress o,
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