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Transient Response of Damped Beat-Up Mechanism for Narrow Looms
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Abstract: The influence of damping element on the parametric instability of a narrow loom beat-up mechanism
is investigated. The mechanism is modeled as a SDOF Second-Order differential equation. The model is
subjected to two forcing functions; the turming effect of the driving shaft and the resulting umpact on the
system due to the beat-up action of the beater. In this study, the function for describing the mput forcing
functions on SDOF beater system is an arbitrary one and the transient response is expressed as a functional
relation with time using Laplace transform. The complete solutions for the transient response are developed
for five cases of the damping coefficient. A range of parameters for the damping coefficient required to stabilize

the system was obtained.
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INTRODUCTION

The stability of a system relates to its response to
inputs and other disturbances from its surrounding. A
system which remains in a constant state unless affected
by an external action and which retums to a constant
state when the external action is removed can be
considered to be stable. The stability of a system is
mnportant and 1s generally a safety 1ssue requiring
concern in engineering system. It 1s often desired to
understand the extent of system stability in order to be
able to determine its degree of performance.

The beat-up mechanism of a narrow loom 15 a
substructure of the narrow loom mechanism which
generates a DRRD harmomc motion for beating the weft
mto the yam during weaving process as reported mn Raji
(2000). The beater mechanism 1s subjected to impact
excitation resulting from its beat-up action during its
operation and the system experiences instability as a
result of discontinuity in its velocity as discussed in an
earlier study under review; the impulse-momentum
technique was used to expose the instability experienced
in the system. The instability of the mechanism could
cause the system’s failure which in turn will affect the
output of the weave. The need therefore arise to mtroduce
a control element into the system to solve thus problem of
instability.

Improving the stability of systems has been a subject
of discuss for long now. Michel and Hu (2000) and
Haddad and Nersesov (2004) developed vector Lyapunov
theory used for analyzing system stability, the vector
Lyapunov function was introduced as a generalization of
control Lyapunov functions to show that asymptotic

stability of a non-linear dynamic system is equivalent to
the existence of a control vector Lapunov function. A
numerical decentralized feedback control law was
developed to decentralized non-linear dynamical system
in-order to obtain generalized forward gain for stability of
the system. Haddad ef al. (2007) mvestigated sufficient
conditions for finite-time stability using continuous
Lyapunov function to develop a general framework for
finite-time stability analysis based on vector Lyapunov
function. It 15 possible to reset the state variables of
impulsive dynamic systems to an equilibrium state using
both scalar and vector Lyapunov functions. Haddad and
Nersesov (2007) also extended the Lyapunov theory for
continuous-time systems to address stability and control
design of impulsive dynamic systems via vector
Lyapunov functions for a large scale impulsive dynamic
system. It 1s shown in the study that partial stability for
state dependent impulsive dynamical systems can be
address via vector Lyapunov functions. Haddad and
Nersesov (2008) further developed a finite-time stabilizing
controller for impulsive dynamic systems that are robust
agamst full modeling uncertamty.

Liand Scoh (1999) derive necessary conditions for the
stability of dynamic systems in the sense of Lyapunov
which are used to study the stability of discontinmuous
dynamic systems, including fuzzy systems and impulsive
differential systems. Litsyn et al. (2000) discussed the
parameters of stabilization control procedure for linear
controlled planar systems which admit stabilization via the
linear hybrid feedback controls. A matrix decomposition
method had also been used to study the stability of the
equilibrium state of non-autonomous linear systems as

in Abdel-Rahman and Ahmadi (1986). This techmique
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systematically provides sufficient stability and asymptotic
stability conditions for such systems, several criteria
regarding the stability of linear systems with time-varying
coefficients were developed.

The literature search indicates that generally the
authors of the previous investigation on the stability of
dynamic systems have directed their studies to special
functions such as the Lyapunov function for describing
the various stability situations of the dynamic systems. It
15 however more convenmient for simplified dynamic
systems to determine the systems stability response by
using the fundamental solutions as described in this
study. The basic agreement is to feedback controlled
parameters of the system.

Negative feedback generally caused wvariables to
return towards their original value and therefore act as
stabilizing forces in dynamic systems. However to
guaranty stability, the negative feedback must act gently
to prevent the oscillation of variables about their
equilibrium. This can be achieved by the careful selection
of the feedback parameter. A feedback structure 1s
proposed for the beat-up mechamsm to regulate the
instability experienced by the mechanism during
operation.

In this research, we extended the general knowledge
of transient response analysis to predict the response
of the narrow loom beat-up mechanism when a feedback
element such as a viscous damper 1s introduced to control
the stability of the system.

MATERIALS AND METHODS

Fundamental factors that govern the qualitative
behavior of dynamic systems needed be established. The
intent is to focus the analysis on the derivation of basic
proposition about the factors that determine the stability
of the system m the elementary context of one
dimensional autonomous system. Damping 1s an effective
means for attenuating vibration response but must be
placed in the vibration energy transmission path to
effectively attenuate the response of the system. The
beat-up mechanism of the narrow loom as shown in
Fig. 1 18 modeled as a torsional system comprising a shaft
of torsional stiffness K, a beam of mass-moment of mertia
I, which represents inertia body for the beater and slay
bar rotating about the axis of rotation of the shaft. Torque
T, 18 delivered on the beater. The system 13 damped with
a viscous damper of coefficient, B and modeled as a
Single Degree of Freedom (SDOF) torsional system as
shown in Fig. 2. The damping element is located to
dissipate the energy generated as a result of the impact
experienced during the operation of the mechamsm. It 1s
deliberately introduced as a feedback element for purpose
of returning the system to its equilibrium state after
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Fig. 1. Schematic diagram of the model mechamsm
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Fig. 2: Beater System SDOF model
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experiencing the mmpulsive torque. The corresponding

differential equations describing the model are obtained

as expressed in Eq. 1:
J6+BO+KO="T,({t)+ T, (1)

TO is the torque associated with the turning effect of
the follower on the beater and T, is the impulsive torque
on the beater as it beats the weft into the yarn.

The resulting ecuation identifies with a linear second-
order dynamic system. The damping ratio { and
undamped natural frequency w, of the system are
expressed respectively as:

K
(= B ande - J_ @
2IK I
The system model can thus be expressed as:
0+2lmb+0’ 0=T,+T, (3)
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The turning effect which is a continuous torque is
considered constant as continuously delivered on the
beater shaft.

Whle the impulsive torque resulting from the beat-up
action i3 a momentary tumning effect. Both Ty and T,
applied will contribute to the determination of the
response.

The responses due to the two forcing functions could
be analyzed separately and use the principle of
superposition to determine the overall response of the

systern, 8(t) = 04(t) + O,(t).

It is important to note that the continuous
torque 15 considered for step response whule
the mmpulsive torque 1s considered for 1mpulse
response.

To complete the formulation of the problem the initial
conditions of the system is specified as in Eq. 4:

8(07) =6, and B(0) =8, 4

Equation 3 and the appropriate initial conditions (4)
constitute the appropriate model equations, the solution
of which can now be conveniently obtained by Laplace
transform.

Let the Laplace transform quantity of 6 be denoted
by 6, we then can obtain:

(s+2Cm, )8, + 6,
s'+20m s+ o',

6(s)= { }T(s) + (5)

8%+ 28w, + o,

Hence for a unit-step mput of the tuming torque
T (s) = T,, 0 is obtained as:

1 e—mn[cf@)r
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L+ -1
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And for the unit-impulse torque T (s) = T, B is
obtained as:
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RESULTS AND DISCUSSION

The responses for the unit step torque and the unit
impulse torque are programmed in the Microsoft Excel
envirorment. For the purpose of illustration of the results,
the following parameter values were employed:

The wvalues for the responses are tabulated in
Table 1 and 2. The overall response due to the two forcing
functions is determined by principle of superposition and
tabulated in Table 3. Graphical interpretations of the
responses are presented in Fig. 3-5.

Figure 3 and 4 shows the separate decay effect of the
damping element on the beater system. It is observed that
the turning torque on the system by the shaft introduces
a high level of instability on the system. The system is
damped by the dashpot element representing the desire to
achieve stability targeting steady state response of the
beater system. The influence of the damping element on
the performance characteristics is strongly dependent
upon the damping coefficient of the damper employed.
Thus, the response characteristics of the beater system
are established for five damping coefficients as shown
in Fig. 5. The peak response of the system increases

Response to a unit step

Fig. 3: Response of beater system to a unit step: 6,= 0,
el0z 0
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Table 1: System response table for unit step input of applied torque TO Table 2: System response table for unit Impulse input of applied torque T;
System response to a unit step input System response to a unit impulse input
Time (t) = 13 =8 (=4 (=3 (=2 Time (t) = 1j =8 (=4 =3 =2
0 -7.89945  -0.60993 -2.4641 -1.52982  -0.54919474 0 0 0 0 0 0
10 -55.8082  -38.5473 -8.65859  -3.27154  (.458842883 10 0.060882 0.067271 0.072498 0.06358  0.039605
20 -64.5513  -39.2002 -4.12228  -0.36197  1.408403047 20 0.03688 0.035919  0.020356 0.011434  0.002717
30 -57.5719  -30.6546 -1.10235  0.723868  1.71428895 30 0.022341 0.019179  0.005716 0.002056  0.000186
40 -459076  -21.3427 0234111 1.033942  1.957662524 40 0.013534 0.01024 0.001605 0.00037 1.28E-05
50 -34.337 -13.8349  0.747452  1.129035  2.197200663 50 0.008198 0.005468  0.000451 6.65E-05  8.77E-07
60 -34.5991  -8.47217 0.932035 1.172805  2.436624205 60 0.004966 0.00292 0.000127 1.20E-05  6.02E-08
70 -17.0472  -4.88586 0.997107 1.205231 2.67605813 70 0.003008 0.001559  3.55E-05 2.15E-06  4.13E-09
80 -11.4711  -2.58496  1.021043  1.235266  2.91549457 80 0.001822 0.000832  9.98E-06 3.87E-07 2.83E-10
90 -7.48667 -1.15029 1.031319 1.264814  3.154931345 90 0.001104 0.000444  2.80E-06 6.95E-08  1.94E-11
100 -4.70558  -0.27421 1.03717 1.294265  3.394368157 100 0.000669 0.000237  7.86E-07 1.25E-08 1.33E-12
110 -2.7983 0252327 1.041616  1.323696  3.633804972 110 0.000405 0.000127  2.21E-07 225E-09 9.14E-14
120 -1.50808 0.564846 1.045621 1.353124  3.873241788 120 0.000245 6.77E-05 6.20E-08 4.04E-10 6.27E-15
130 -0.64483  0.748467 1.040949  1.382551  4.112678604 130 0.000149 3.61E-05 1.74E-08 727E-11  43E-16
140 -0.07242  0.855455 1.053318 1.411978  4.352115419 140 9.00E-05 1.93E-05  4.89E-09 1.31E-11  2.95E-17
150 0.304306 0917358 1.057132  1.441405 4.591552235 150 5.45E-05 1.03E-05 1.37E-09 2.35E-12  2.02E-18
160 0.550671  0.952962 1.060943  1.470832  4.830989051 160 3.30E-05 5.50E-06  3.85E-10 423E-13  1.39E-19
170 0.790909  0.973334 1.064752 1.500259  5.070425866 170 2.00E-05 2.94E-06 1.08E-10 7.61E-14  9.52E-21
180 0.81464 098494  1.068561 1.529686  5.309862682 180 1.21E-05 1.57E-06  3.04E-11 1.37E-14  6.53E-22
190 0.881513  0.991525 1.07237 1.559113  5.549299498 190 7.35E-06 8.37E-07  8.53E-12 2.46E-15  4.48E-23
200 0.924467 0995249 1.076179  1.58854 5.788736314 200 4 45E-06 447E-07  2.40E-12 442E-16  3.07E-24
210 0.951969 0.997349 1.079988 1.617967  6.028173129 210 2.70E-06 2.39E-07  6.73E-13 7.96E-17 2.11E-25
220 0.969526  0.99853  1.083797 1.647394  6.267609945 220 1.63E-06 1.27E-07 1.89E-13 1.43E-17  145E-26
230 0.980705 0.999192 1.087606 1.676821  6.507046761 230 9.89E-07 6.80E-08  5.30E-14 2.57E-18  9.92E-28
240 0.987806 0.999563 1.091415 1.706248  6.746483576 240 5.99E-07 3.63E-08 1.49E-14 4.63E-19 6.81E-29
250 0.992307 0.999771 1.095224 1.735675  6.985920392 250 3.63E-07 1.94E-08  4.18E-15 8.32E-20 4.67E-30
260 0.995154 0.999887 1.099033 1.765102  7.225357208 260 2.20E-07 1.04E-08 1.17E-15 1.50E-20 3.2E-31
270 0.996952  0.999953 1.102842  1.794529  7.464794023 270 1.33E-07 5.53E-09  3.30E-16 2.69E-21 22E-32
280 0.998086  0.999989 1.106651 1.823957  7.704230839 280 8.07E-08 2.95E-09 9.26E-17 4.84E-22 1.51E-33
290 0.9988 1.00001  1.11046 1.853384  7.943667655 290 4.89E-08 1.58E-09  2.60E-17 8.70E-23  1.03E-34
300 0.999248 1.000022 1.114269 2 8.18310447 300 2.96E-08 842E-10  7.30E-18 1.56E-23  7.09E-36
310 0.99953 1.00002  1.118078  1.912238  8.422541286 310 1.79E-08 450E-10  2.05E-18 2.81E-24  4.87E-37
320 0.999706  1.000034 1.121887 1.941665 8.661978102 320 1.09E-08 2.40E-10  5.75E-19 5.06E-25  3.34E-38
330 0.999817  1.000037 1.125696 1.971092  8.901414917 330 6.58E-09 1.28E-10 1.62E-19 9.10E-36  2.29E-39
340 0.999886  1.000039 1.129505 2.000519  9.140851733 340 3.99E-09 6.84E-11 4.54E-20 1.64E-26  1.57E-40
350 0.999929  1.000041 1.133314  2.029946  9.380288549 350 2.42E-09 3.65E-11 1.27E-20 2.94E-27 1.08E-41
360 0.999956  1.000043 1.137123  2.059373  9.619725364 360 1.46E-09 1.95E-11 3.58E-21 5.29E-28  7.39E-43
370 0.999973  1.000044 1.140932 2.0888 9.85916218 370 8.86E-10 1.04E-11 1.00E-21 9.52E-29  5.07E-44
380 0.999984 1.000045 1.144741 2.118337  10.098599 380 5.37E-10 5.56E-12  2.82E-22 1.71E-29  3.48E-45
390 0.99999 1.000047 1.14855 2.147654  10.33803581 390 3.25E-10 297E-12  7.92E-23 3.08E-30 2.39E-46
400 0.999994  1.000048 1.152359 2.177081  10.57747263 400 1.97E-10 1.59E-12  2.22E-23 5.54E-31  1.64E-47
410 0.999997 1.000049 1.156167 2.206508  10.81690944 410 1.19E-10 847E-13  6.24E-24 9.96E-32  1.12E-48
420 0.999998  1.00005 1.159976  2.235935 11.05634626 420 7.23E-11 4.52E-13 1.75E-24 1.79E-32  7.7E-50
430 0.999999 1.000052 1.163785 2.265362  11.29578307 430 4.38E-11 241E-13  4.92E-25 3.22E-33  5.28E-51
440 1 1.000053 1.167594  2.294769  11.53521989 440 2.65E-11 1.29E-13 1.38E-25 5.79E-34  3.62E-52
450 1 1.000054 1.171403 2.324216  11.77465671 450 1.61E-11 6.88E-14  3.88E-26 1.04E-34  2.49E-53
0.081 201
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Fig. 4. Response of beater system to unit impulse: 0,=0, Fig. 5: Overall transient response of beater system; 0,=0,
Cl0#0 Cl0=#0
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Table 3: Overall system response table for the beater svstem
Overall system response

Time (1) {= 15 i=8 =4 i=3 (=2

0 -7.89945 -0.60993 -2.4641 -1.52982 -0.54919474
10 -55.747318 -38.480029 -8.586092 -3.2079%¢6 0498447956
20 -64.51442 39164281 4101924 -0.350536  1.411119875
30 -57.549559  -30.635421 -1.096634 0.725924 1.714475319
40 -45.894066 -21.33246 0.235716 1.034312 1.957675308
50 -34.328802 -13.829432 0.747903 1.1291015 219720154
60 -34.594134  -8.46925 0932162 1.172817 2436624265
70 17044192 -4.884301 0.9971425 1.20523315 2.676058134
80 -11.469278 -2.584128 1.021053 1.23526639 2915494571
90 -7.485566  -1.149846  1.0313218 1.26481407 3.154931346
100 -4.704911 -0.273973  1.0371708 1.29426501 3.394368157
110 -2.797895  0.252454 1.0416162 1.323696 3.633804972
120 -1.507835 0.5649137  1.0456211 1.353124 3873241788
130 -0.644681 0.7485031 1.040949 1.382551 4.112678604
140 -0.07233 0.8554743  1.053318 1.411978 4.352115419
150 0.3043605 09173683 1.057132 1.441405 4.591552235
160 0.550704 0.9529675 1.060943 1.470832 4.830989051
170 0.790929 0.97333694 1.064752 1.500259 5.070425866
180 0.8146521  0.98494157 1.068561 1.529686 5309862682
190 0.88152035 099152584 1.07237 1.559113 5.549299498
200 0.92447145 099524945 1.076179 1.58854 5788736314
210 0.9519717 099734924 1.079988 1.617967 6.028173129
220 0.96952763 099853013 1.083797 1.647394 6.267609945
230 0.98070599 0.99919207 1.087606 1.676821 6.507046761
240 0.9878066  0.99956304 1.091415 1.706248 6.746483576
250 0.99230736 099977102 1.095224 1.735675 6.985920392
260 0.99515422 099988701 1.099033 1.765102 7.225357208
270 0.99695213 0.99995301 1.102842 1.794529 7464794023
280 0.99808608 0.999980 1.106651 1.823957 7.704230839
290 0.99880005 1.00001 1.11046 1.853384 T.943667655
300 0.99924803 1.000022 1.114269 1.882811 8.18310447
310 0.99953002 1.00002 1.118078 1.912238 8422541286
320 0.99970601 1.000034 1.121887 1.941665 8.661978102
330 0.99981701 1.000037 1.125696 1.971092 8.901414917
340 0.999886 1.000039 1.129505 2.000519 9140851733
350 0.999920 1.000041 1.133314  2.0299%6 9380288549
360 0.999956 1.000043 1.137123  2.059373 9.619725364
370 0.999973 1.000044 1.140932 2.0888 9.85916218
380 0.999984 1.000045 1.144741 2118337 10.098599
390 0.99999 1.000047 1.14855 2.147654 10.33803581
400 0.999994 1.000048 1.152359 2177081 10.57747263
410 0.999997 1.000049 1.156167 2.206508 10.81690944
420 0.999998 1.00005 1.159976 2.235935 11.05634626
430 0.999999 1.000052 1.163785 2.265362 11.29578307
440 1 1.000053 1.167594  2.294769 11.53521989
450 1 1.000054 1.171403  2.324216 11.77465671

tremendously as the damping coefficient 1s increased,
except for damping coefficients range 3<{<4 for which the
system quickly attained steady state. This places a
limiting boundary beyond which the system waill
experience very lugh resonant at start of operation and as
shown in Fig. 3 and 4, a damping coefficient below the
lower boundary subjects the system to uncontrolled
response. Figure 3 depict the understanding that it 15 the
applied turning torque that is mostly responsible for the
early mstability of the system.

CONCLUSION

The transient response of a narrow loom beater
mechanism with a damping element is investigated to

demonstrate the significance dynamic of the damping
element introduced into the beater system. The beater
system 1s modeled as a linear second-order dynamic
systermn.

Simulation results are obtained for the transient
response of the system for five damping coefticients. A
comparison of the responses reveals that the system
stability could be controlled by the intreduction of the
damping element.

The system is acceptably damped within certain range
of damping ratio beyond which resulting response peak
causes early experienced instability that may lead to the
failure of the system.

The discontinuities in the response of the system
gradually decay in amplitude wntil the imbalance
disappears. The damping coefficient of the damping
element determines the rate of decay and the steady
state of the system. Understanding the leverage
points of the system can allow a better control of the
mechanism.

In the damped system the negative feedback is
constantly correcting the system instability by driving the
system to its desired state. The speed at which the system
comes to equilibrium depends on the system’s degree of
damping. In conclusion, understanding the degree of
damping m the system 1s useful for controlling the system
stability.

REFERENCES

Abdel-Rahman and G. Almadi, 1986. Stability analysis
of non-autonomous  linear  systems by a
matrix decomposition method. Int. J. Syst. Seci,
17: 1645-1660.

Haddad, W.M. and S. Nersesov, 2004. On the stability
and control of nonlinear dynamical systems via
vector lyapunov function. Proceedings of 43rd TEEE
Conference on Decision and Control, Dec. 14-17, IEE
Kplore Digital Library, pp: 4107-4112.

Haddad, W.M. and S. Nersesov, 2007. Control vector
lyopunov functions for large scale impulsive
dynamical systems. Nonlinear Anal. Hybrid Syst.,
2:223-243,

Haddad, WM. and S. Nersesov, 2008. Fimte-time
stabilization of nonlinear dynamical systems.
Nonlinear Anal. Hybrid Syst., 2: 832-845.

Haddad, WM., Q. Hui and 8. Nersesov, 2007. Finite-time
stabilization of nonlinear dynamical systems via
control vector lyapunov functions. Proceedings of
American Control Congress, Tuly 11-13, Elsevier
Science Ltd., Amsterdam, pp: 4810-4816.



J. Eng. Applied Sci., 5 (1): 30-35, 2010

Michel, AN. and B. Hu, 2000. Stability analysis of

Li, 7. and CB. Soh, 1999. Lyapunov stability of
discontinuous  dynamical systems using vector

discontinuous  dynamic systems. IMA J. Math.

Control Inform., 16: 261-274. Lyapunov functions. Circ. Syst. Signal Process.,
Litsyn, E., Y.V. Nepomnyashchikh and A. Ponosov, 2000. 19: 221-243.

Classification of linear dynamical systems n the plane  Raj, N.A., 2000. Motion specification for beat-up

in admitting a stabilizing hybrid feedbaclk control. T. mechanism of narrow horizontal weaving loom. Ann.

Dyn. Control Syst., 6: 477-501. Eng. Anal., 1: 28-40.

35



