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General Newtonian Flow Due to the Longitudinal and Torsional Oscillation of a Rod
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Abstract: The unsteady flow of an incompressible viscous fluid, characterized by the motion of a long, circular,
cylindrical rod, oscillating both longitudnally and torsionally at different frequencies and amplitudes
sexarnined, with slip occurring at the surface of the cylindrical rod. Analytical expressions for the velocity field,
the tangential drag and the work done by the drag force have been obtained and are displayed graphically
using particular values of the flow parameters. These are plotted for different values of slip from perfect slip to

no-slip, so as to get some msight mto the effects of slip.
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INTRODUCTION

Casarella and Laura (1969) mvestigated the motion of
a viscous fluid due to the longitudinal and torsional
oscillation of an infinite circular cylindrical rod immersed
m a fluid. They were primarily interested in the drag force
acting on the rod as this 13 of practical significance in
many ocean engineering problems. They obtained exact
solutions for the velocity field, stresses and drag on the
rod. Rajagopal (1983) examined a similar problem for a
non-Newtonian fluid in particular a fluid of second grade
and like Casarella and Laura, obtained an exact selution to
the field equation. Ramkissoon and Majumdar (1990)
examined the comresponding internal flow problem for
viscous fluids. They obtamned an exact solution for the
flow field and explicit expressions were given for the shear
stresses, the drag experienced by the cylinder and the
drag coefficient. Ramkissoon et al. (1991) examined the
same problem as Casarella and Laura (1969) but for a Polar
fluid. Here, an exact solution was obtained for the velocity
field. Rahaman (2004, 2005) examined the same problem as
Ramkisscon and Majumdar (1990) and Casarella and Laura
(1969) but for an upper-convected Maxwell fluid, explicit
expressions were obtained for the velocity field, shear
stresses and drag in each case. In all of these problems,
the frequencies of oscillations in the longitudinal and
torsional directions were the same. Furthermeore, the

magnitude of the oscillations contained a common
parameter, 1mplying dependency for these orthogonal
motions.

Owen and Rahaman (2006) appear to be the first to
relax the common oscillatory frequencies for the two
directions of motion m their intemal flow problem
examined and thus took different frequencies for these
oscillations.

The main objective of this research is to investigate
a similar problem to that of Casarella and Laura (1969) for
a viscous fluid but a more general case. In particular, the
motion of a viscous fluid due to the longitudinal and
torsional oscillation of an infinite, circular cylindrical rod
immersed n the flud is examined but the two different
oscillaions of the rod are moving with different
frequencies, like that done by Owen and Rahaman (2006).
Further, the amplitude dependency of the oscillatory
motions, due to the presence of a common factor 1s
removed. Finally, slip at the surface of the cylindrical rod
is taken into consideration, as it has long been
established that the conventional no-slip boundary
condition begins to break down even before the
linear  stress-stram  relationshuip becomes mvalid
(Gad-el-Hak, 1999).

Schaaf and Chambre (1961) have shown that the slip
parameter, P, otherwise known as the Coefficient of
Sliding Friction 1s given by Eq. 1:
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Where:
pu = The viscosity coefficient
¢ = The Tangential Momentum Accommaodation
Coefficient (TMAC)

L = The characteristic length of the flow geometry

Kn = The Knudsen number, which determines the
degree of rarefaction effects and the validity of the
continuum hypothesis

It can be shown that Kn=0 and when Kn=0.1, the
continmum model and therefore the Navier-Stokes
equations become invalid in which case, the Boltzman
equation has then to be applied to describe the molecular
motion properly. When Kn>0.01, the Navier-Stokes
equation is a good approximation. However, when
0.01<Kn>0.1 (commonly referred to as the slip-flow
regime), the Navier-Stokes equations can still be used,
provided tangential slip-velocity boundary conditions are
imnplemented along the solid walls of the flow domain
(Schaaf and Chambre, 1961; Aleksandrov et al, 1988,
Morimshi, 2006). It is the latter situation, 1.e., a continuum
flow field with slip boundary conditions that is to be
investigated in this study.

MATERIALS AND METHODS

A long, straight, solid, circular cylindrical rod with
uniform cross-section, of radius a, indergoing oscillations
both longitudinally and torsionally with different
frequencies and amplitudes and fully immersed m an
mcompressible viscous fluid s considered. It will be
assumed that the rod is infinite in length, so that rod end
effects are neglected, no external forces are acting and the
flow is fully established, which is at rest at infinity.

The equation of motion for a wviscous fluid
(Ramkissoon and Majumdar, 1990) 1s given by the
Navier-Stokes equation:

! o da 94 . 2
575Vp+vv 9_5_§+(g Viq )
Where:
F = The external force per unit mass
P = The pressure field
P = The density of the flud

v=p/p = The kinematic viscosity in which u is the
viscosity coefficient and ¢ is the velocity

field

Working in cylindrical polar co-ordinates (R, 6, z)
with the z-axis comciding with the axis of the cylinder,
assuming symmetry, then it is fair to assume that the

velocity field of the induced flow 1s of the form
q = v(R,HG+W(R, 2 (3)

It 1s also assumed that the pressure field is
independent of the 6 and 2 co-ordinates and is of the
form:

p=pR;}) 4

The continuity equation for an incompressible fluid
1s (Ramkissoon and Majumdar, 1990):

V+q=0 (5)

Substituting Eq. 3 into 2, gives for each component:
2
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The components of stress are given by Batchelor
(1967Y:

8, =-p+2ue, i=R.0,2) (9)

S =2pe;  1#]) (10)

1]

where, e, are the components of the rate of deformation
tensor, which in this case are given by Batchelor (1967):

erp =0 (1)
1{ov
=2 l=p (12)
Fen R{ae}
L (13)
9z
2e,, = Ze:laﬂ+al:0 (14
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e, =2e,, :2—;: (15)
av v
2eg, = 2oy :ﬁ_ﬁ (16)

Utilizing Eq. 11-16 m Eq. 9 and 10 gives the
components of stress as:

Bap =S8 =8, =-p (a7
8, =8,,=0 (18)
ow
SZR :SRZ _H(ﬁl (19)
av v
Spe =S = H(BR _R} (20)

By solving Eq. 7 and 8, subject to certain conditions,
the velocity field can be completely determined. Note that
when the velocity field has been determined, the pressure
field and the components of stress can also be determined
from Eq. 4, 6, 19 and 20.

The velocity of the rod at its surface is taken to be:

u= alcos(Qlt)é + an,co8(£2,1)Z 2D

where, (), Q, represent the different frequencies in the
torsional and longitudinal directions respectively. o, o,
are the different amplitudes of the oscillations in the
torsional and longitudinal directions respectively.

For the slip condition at the surface of the rod, the
well known condition proposed by Basset (1961) 1s used
that 1s the tangential velocity of a fluid relative to the solid
at a point on its surface is proportional to the tangential
stress prevailing at that point. For this it will be assumed
that the material making up the surface of the rod is
uniform, so that the mean degree of roughness per unit
area is the same. This implies that there will be equal
amounts of slip in any direction and in particular, the
longitudinal and torsional directions.

Using this last assumption, 3, 21 and Basset’s slip
condition gives:

Bv —oycos{Qt)] g, = SRB‘Rza (22)

B[w —o,co8(Q,t)] p_, =8 (23)

Rz

R=a

21

where, P is the slip parameter which is assumed to
depend only on the nature of the fluid and the solid
surface.

Furthermore, f>0 and in particular, p = O represents
perfect slip, whereas B—+ represents no shp. Using Eq. 19

and 20 in 22 and 23, respectively gives:

B[v —a,cos(Qt)] =1 {g—; - %}R 24
=a

and
ow
Blw —a,co8(Q,0] g _,=u {E}R:a (25)
Since the flow 1s at rest at infinity then:
viR,t) > 0asR =« (26)
and
W(R,t) —>0as R —oo (27)

To determine the velocity field, q, given by (3),
Eq. 7 and 8 need to be solved subject to the conditions
given by Eq. 24-27. It 1s noted that Eq. 3 satisfies the
continuity Eq. 5, automatically.

Assume that v(R, t) and w(R, t) are of the form:

WRD =R[(R)e™ (28)

w(R,t) = R[g(R)e™"] (29)

where ‘R’ represents the real part of the expression.
On substituting these into Eq. 7 and 8 and solving
subject to the stated conditions gives:

VRO =R o, 8K, (“1;) dat | (30)
uy K, (v,a) + (B + ;‘}Kl (v,a)
and
W(R,t) — g{|: O"'zﬁKu (Yz R) eigz r:| (31 )
B, (r,a) + py, K, (v,a)
where:

i
Y, :,/—1 L G=12)and K, ()
v

is the Modified Bessel Function of the second kind of
order n. The flwmd’s velocity field has now been
completely determined.
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Utilizing Eq. 30 and 31 in Eq. 20 and 19, respectively,
the shear stresses on the rod are found to be:

ZK (v )

Vi@

pYIOtIB(KD (ra)+ }
gt (32)

2
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The tangential drag force, D, acting on the rod per
unit length 1s (Casarella and Laura, 1969):

Spe =R

—py, 0, BK, (,a)

5. - { (33)
B, (v,a) + py, K, (v,a)

D= -2ma[S. 6 +5:, 2] _, (34)
Substituting Eq. 32 and 33 into 34 gives:
[ 2K, (v, |
e b
2 1 e1ﬁlte+
D = 2rapBR| py,K, (yla)+[B+MJK1 (7,a) (35)
a

¥,0, K, (,a)
BE (ya)+ pr, K (v,a)

185t A

The work done W, by the drag force D on the fluid
per half-cycle of torsional and longitudinal motion is
given by Casarella and Laura (1969):

T

Q
d 36
W, == [ Deuat o
]

where, j = 1, 2 refer to the torsional and longitudinal
motions respectively.
Substituting Eq. 21 and 35 into 36 gives:

2K (va
| i 2502
- ! IQ.Q)+
W, = -napR len<v1a)+[B+;jKlwla>
2
r RS g o)
B (r @) + 1y, K, (7,2)
(37)
where:

22
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1

(38)
RESULTS AND DISCUSSION

In order to get some insight on the effects of slip,
various graphs mvolving the components of velocity,
drag force and work done are displayed for different
values of the slip parameter B, ranging from B = 0 (perfect
slip) to p—<= (no-slip). For some practical oceanographic
problems, the parameters v and £ are bounded by
Casarella and Laura (1969):

9.30x107 <v=1.86x10"° m® sec ' (39)
1= 10w (40)

2n

Following Casarella and Lauwra by taking:
/& a=112 (41)
v
gives on substituting into Eq. 40:
36w _ , 627, “2)
5n n

For seawater, v=1.17x10""m’ sec™" and u = 0.00121
pas (LMNO Engineering, Research and Software, Ltd.,
1999), substituting this value of v mto Eq. 42 gives
approximately:

0.0153<a<0.0483 m (43)
Using Eq. 43, the value of a 1s taken to be:
a=003 m (44)

Using Eq. 41 with j = 1, Eq. 44 and v for seawater,
gives approximately:
Q -163 (45)

Taking into consideration the minimum value of:
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Q
—1a =503
v

for a 0.00635 m diameter rod, as stated by Casarella and

Laura, then selecting:
2 a=175
v v

along with Eq. 44 and v for seawater, gives approximately:

(46)

Q,=731 an

The behaviour of the velocity profiles of the
6 -compoenent are displayed in Fig. 1-4 for four different
values of the slip parameter Pp. As observed, the
magnitude of the velocity decreases as one moves away
from the cylindrical rod, however, the larger the value of
B then the greater the magnmtude of v (R, t)/c,. The
same is observed in Fig. 5-8 for w (R, ty/o, from the
7 -compoenent.

Figure 9-12 show the behaviour of the wvelocity
profiles of the §-component at four different times. As
observed, the magnitude of the velocity decreases as one
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moves away from the cylindrical rod. Also, the larger the
value of p then the greater the magnitude of v (R, t)u,
this is consistent with that observed in Fig. 1-4. The
same 18 observed m Fig. 13-16 for w (R, t)/t; from the
Z -component.

Figure 17 shows the behaviour of the §-component
of the velocity field against P for four different values of
t on the surface of the cylindrical rod. It can be observed
that as [ increases, v (R, t)/t, tends to the no-slip case.
In Fig. 18 a similar observation can be made for the
behaviour of the Z -component.

With respect to the drag, Fig. 19 shows the
behavicur of the §-component against [} at four different
times. Tt is observed that as the value of [ increases, the
magnitude of §-component/, also increases. In Fig. 20,
a similar observation is made for the Z-component/c,.
Figure 21 shows the behaviour of the §-compenent of
the drag against t for four different values of the slip
parameter B. For each value of B, it can be observed that
the graph appears to be periodic and as P increases, the
magnitude of the §-component/a, also increases, which
is consistent with the observations from Fig. 19.
Corresponding to Fig. 21, the same observation can be
made for the Z -component/c, from Fig. 22. This 1s also
consistent with observations from Fig. 20.
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Fig. 22: z-component/e;, of the drag against t

Tt is of interest to compare the drag in each direction of
oscillatory motion to determime which direction
experiences greater drag. Thus, it can be shown that the
difference in the magnitude of the components for the
drag, given by Eq. 35, may be written as:

26

v, (K (ra)+ 2 (%a)}
ER _1 Yla €t (| _
o, py K (va)+
D, =2napPa, 5
[B+ “}q(vla)
a
{ 7,K, (v,2) emzt}
B, (@) + Wy, K, (1,a) |
(48)
and further

@ |D, (49)

o, |O

Dl —
o,

Based on Eq. 48 and 49, it suffices to only examine
D/u, or D/,

Figure 23-25 shows D /a, against P for t = nm/2€2,£2,,
n=0,1,2,3 for different values of o ,/z,. Tt is observed that
when a /¢, = 1/2, the drag mn the longitudinal direction of
motion is greater than the drag in the torsional direction
of motion for each value of t. Conversely, when o, /t; = 2,
the drag in the torsional direction of motion i1s greater
than the drag in the longitudinal direction for the same
values of t. It 1s also observed that when /¢, = 1, the
drag in the torsional direction of motion is greater than

|

1

the drag in the longitudnal direction of motion for
t = nw/2QQ, n=0]12but the opposite
observed whent=37/2Q Q..

It 1s noted that the drag in each direction 1s the same
when:

is

- v, K (v,a) LeX;
Cﬂl BKB (Yza)+MY2K1 (Yza)
D=0=—=
o, 2K (1,a)
1| K, (ra————
v.a i
% 1 e1.Qi’[

2u
uy, K, (v,a)+ B+— |K (v,2)
a

Figure 26-28 show D, /i, against t for four different
values of the slip parameter B for different values of « /a,.
Tt is observed that D /u, varies between positive and
negative values, implying that the more efficient direction
of motion keeps changing with the progression of time.
Since,
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then one needs to only examine

=

Wi o Vi
N

a’ oa,
to explore the behaviour of the work done by the drag
force.

As p varies, the behaviour of the work done in each
direction is shown in Fig. 29 and 30 for different values of
o,/t,. It 15 observed in all cases that there 1s an increase
in magnitude as P increases and using Eq. 37, it can be
easily shown, as the graphs suggest that all tend to the
limat:
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CONCLUSION

Comparison of the work done in each direction of
motion 1s now examined. Noting (50), it suffices to only
examine

From Fig. 31-33, it is observed m all cases that the
magnitude of the work done in longitudinal direction 1s
greater than the work done in the torsional direction.

0.0
Wik
0,025 /
1
"i 0.051 \‘
270
3
00751
Wh?
017 /
—
A
) 5 10 15 20

Fig. 31: W/u,” against p for ¢ /e, =1/2
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Fig. 32: W/a,” against P for «, /e, = 1
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Fig.

|w1 ‘ 'lwzlb':

Fig. 34 [W |{W /e, against P for /e, =1/2,1, 2

Again noting (50), the behaviour of the difference in
the work done in each direction, as P varies 1s displayed
m Fig. 34. It 13 observed that the work done in the
longitudinal direction 1s greater than the work done in the
torsional direction, which is consistent with Fig. 31-33.
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