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Volterra-Fredholm Integral Equation with Carleman Kernel in Position and Time
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Abstract: In this study, we introduce an efficient method to find and discuss an approximate solution of the
mtegral equation of type Volterra-Fredholm in the space L,[a, b] * [0, T]. The kemel of Fredholm 15 considered
in position and represented in a logarithmic form, while the kernel of Volterra is taken in time as a continuous

function. Using a numerical method we obtain a linear system of Fredholm integral equations is position which

will be solved.
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INTRODUCTION

The mathematical physics and contact problems in
the theory of elasticity are modeled by an integral
equation of the first or second kind (Abdou, 2002a, b,
2001). Mkhtarian and Abdou (1990a, b) discussed some
different methods to solve Fredholm Integral Equation
(FIE) of the first kind with logarithmic kemel and Carleman
function respectively. Abdou (2002¢) obtained the
spectral relationships for the FIE of the first kind i one,
two and three dimensional. Abdou and Salama (2004)
obtained many spectral relationships for an mtegral
equation of V-FIE of the first kind. Devles and Mohamed
(1985) and Atkmson (1997) many different methods are
used to solve the Fredholm integral equation of the
second kind numerically. Arutiunian (1959) and Abdou
(2002¢), used orthogonal polynomial method of type
Legendre polynomials to obtain, numerically, the solution
of Fredholm-Volterra integral equation of the second kind
with singular kernel with respect to position.

In this research, we consider the V-FIE of the first
kind:

[ ] Fetofx -y oy, Hdydr

B (1)
+[G it Do, DdT = 1)
(O<v<l)
TUnder the condition:
jq)(x,t)dx = P(t) (2)

The integral Eq. 1 under Eq. 2 is investigated
from the ¢ ontact problem of a rigid surface (G, v) h

aving an elastic material, where G is the displacement
magnitude and v 15 poisson’s coefficient. If a stamp of
length 2 unit, where its surface is describing by f.(x), is
impressed into an elastic layer surface of a vanable
force P(t), whose eccentricity of application e(t), that
cases rigid displacement v(t). Therefore, we define the
free term of (1) as:

fx,t) =mB[8(t) — f.(x)],

G 3
(8_2(1—-0)’ 0t T ()

Here, Eq. 1, the given function of time F(t, T)
represents the resistance forces of the lower material,
while G(t, 1) is called the supplied external force in the
contact domain of the upper and lower surfaces.

In this research, a numerical method is used to obtain
a system of FIEs of the first kind or second kind
depending of the relation between the derivatives of
the two functions F(t, T) and G(t, T) for all values of
t, te[0, T].

Then using potential theory method, the spectral
relationships for the Gegenbauer operator are obtained for
the system of FIEs of the first kind. Finally, we use
Nystrom product method and Toeplitz matrix method to
obtain the mumerical solution for the linear system of FIE
of the second kind with Carleman kernel. The error
estimate, in each case is computed.

MATERIALS AND METHODS

In order to guarantee the existence of a unique
solution of Eq. 1, under the condition Eq. 2, we assume
the following:
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¢ The kernel
k(]
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o

satisfies the discontinuity condition

i

-1-1

- y)dxdy}

(A 1s a constant)

« For all values of t, t€[0, T] the two continuous
function of time F(t, 1) and G(t, T) satisfy, |F(t, T)|<
B, |G(t, T)| <C, B and C are constants

¢ The known function: fi(x, t)e L,[-1, 1] x C[0, T] and its
norm defined as:

0=<t=T

t
et = = max [{F*(x, r)dx
i}

¢ The unknown function ¢p(x, t) behaves like f{x, t) and
satisfies Lipshitz condition with respect to the first
argument and Holder condition for the second
argument

To obtain the solution of Eq. 3, under Eq. 2, we divide
the interval [0,T], as follows:

O=t <t <..<t, =T

where,
t=t.j=0L2..N

to get

jG(tJ,r)¢(x,r)dr +

t )
i1
[[F ok -y dydr=fixt)
o-1
Under the condition:
1
I(b(x,tJ x = P(t,) (%)
i}
Hence we have,
i
Z UGty 00 6+
(6)

(tJ,tl)ﬂx v 0y t)dy +

i=0 -1

O(h?)‘f’ O(h?): fixt),

(h; =maxh;; b =t,, -t)

where, O(h") the estimate error deduced from the

approximate integral of the function G(t, 1) and

om?)

depends of F(t, T). The values of weight functions wu, u
and p. p, depending on the number of derivatives of
G(t, t)and F(t, ©), for all te[0, T], with respect to t. For
example, if G(t, THeC*[0, T], then, we have P = 4, j=4 and

h
vV, =—, 0, = v, =h,,n

—+ v, =12,3,uv, =0
2 2

for m=4. While, if F(t, 0)eC7[0, T], we havep =3,k = 3,

h h

u,=-u=-"2u =h m=L2
2 2

and u, = 0 for m>3. More information for the
characteristic points and quadrature coefficient are
found (Atkinson, 1997, Abdou, 2003). Using the following
notations:

Gt t) =G, Ft.t)=F, ¢xt)=9¢) %
f(xt)=1£(x),4,5,1=012,...N)

the Eq. 6, after neglecting the error, becomes
j j 1 . ]
PG40+ YuE, [lx-y " gy =) &)
i=0 1=0 —1
Under the condition:

1
I¢J(X)dX:R,(Rareconstants =0, 1., N) 9)
-1

»  The Eq. 8 represents a linear system of FIEs of the
second kind, for all cases when the two functions
G(t, t)yand F(t. t) have the same derivatives with
respect to time t€[0, T]. Hence we have,

wo, o+ [lx—y[ o mdy =g,y (10)

where,
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When the function G(t, t) has n derivatives with
respect to t, n<j, therefore the Eq. 8 takes the
following forms:

im {Gnmxn EJlx—y" ¢1<y)dy} =f,00 (D

JZ uk;

i=n+l

[lx=3] "¢, Gdy =
- (12a)

n 1
f3 _Zui {Gngq)i + Ea,]_”x - y|_0 ¢'1(Y)dy}
i=0 ht

The Eq. 11 represents a linear system of FIEs of
the second lkind, while Eq. 12a of the first kind,
& (x),1=0,1, .., nm the RH.S of Eq. 12a represent,
the recurrence solution of integral Eq. 11.

When the function F(t, 1) has n derivatives such that
ni{k, hence we have;

¥ 06,060 =160

10,6, 8 (x) (12D)
i=n+1 1=0 ’ ’
where, ¢, (x) in the R H.S 1s the solution of Eq. 11 and v, in
Eq. 12b are distinct points.

RESULTS AND DISCUSSION

Spectral relationships for carleman integral equation: In
this study, usmng potential theory method by Abdou
(2001, 2002b), we obtain the Spectral relationships for the
FIE of the first kind with Carleman kernel. The importance
of Carleman kernel came from the research of Arutinuian
(1959), who has showed that the plane contact problem of
the nonlinear theory of plasticity, in its first approximation
can be reduced to FIE of the first kind with Carleman
kernel. Consider the integral equation:

1

[Ix=3" 6y = Fo0 <v <1) (13)
-1
Under the static condition:
1
Iq)(y)dy =P, (P is constant) (14)
1

290

To solve Eq. 13, under the condition Eq. 14, we
introduce the general Carleman functior,

Utxt) = I oy)dy _

Sx-yy |

(15)
The solution of Eq. 15, under 14, is equivalent to the
boundary value problem:

LRAU
t ot

AU 0

>

2

(D (L), A=+
9%

82
e

Utx,0) = F(x), (16)

(x,t)e (-L1)
UG, t)y=P",

(P> 0asr=+a’ +t° 5

The complete solution of Eq. 13 is given by
Mikhtarian and Abdou (1990a, b).

v
00—t L xe i 07
T': [
2

where, I'(n) is the gamma function. Using the substitution:

Ut =t Vit (18)
and the transformation mapping
1 1 1
=— = ({+=
2= W= (9)
(L=pe”, z=x+1iy, i=y1)
the boundary value problem Eq. 16, yields
AV{(p,B)+v(2-v)
1 1
+ Vip,6)=0 1
{(pzl)z 4pzsin29} (p= ) :(p< )
! ! = (20)
E(p - —)sine} Vip,0) = o\ . =flcos0)
P
19 19
—m {0 V(0,0 =0, A=—+——+—
(-m {0 (m), V(0,0)=0, 3 oo pzaez)
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where,

Vix,y)=Vip+ l) cos 0,
P
- %)sin 0)=V(p,0)

The transformation mapping (Eq. 19) maps the region
in x-y plane into the region outside the unit circle v, such
that w'({) does not vanish or become infinite outside .
The mapping function (Eq. 19) maps the upper and the
lower half-plane (x, y)e(-1, 1) mto the lower and upper of
semi-circle p = 1, respectively. Moreover, the point z =
will be mapped onto the point { = 0. Using the separation
of variable:

Vip.8) =R{p)z(8) 2D

the first integral Eq. 20 becomes:

, 'R R _ 072_ 2
dp2+pdp+{u(2 D)(l—pz) 0::| (22)
Rip)=0(0<p(1)
and
dz?{au“(2.2”)}(e>—o—n<e<n (23)
da 4sin” 6

where, ¢’ is the constant of separation.
As Abdou (2001), the general solution of Eq. 22
and 23, respectively takes the form:

_omtulipy oayul2 e O . L2
Rp)=p" " (1-p7) F(z,nw,nﬂ,p) (24)

(R(0)=0,0€p<1n=0,12,.)
and

z(0) = |sin6f? CZ (cosH) (25)

(—m{6<m, n=0,12,.)

Here, F (a, b, ¢, z) is the Hypergeometric function and

i)

is the Gegenbauer polynomial. Using Eq. 24 and 25 in
Eq. 21, then using the result in Eq. 18, we have

U(p,B) = p"""F[z,n +un+1+ z;pzj CE(cose) (26)

U(p,e>—U{%(ml),l(p—l)sme]—U(x,y>
p 2 P
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The complete solution of the problem, can be
obtained, by writing Eq. 17 in polar coordinates:

(Y yisin @)

olcosP)=—2
JEz'u-H F{HTD}

lim(1-

10 AU
Lim P —aU,(0<8<n)
(27)

then using Eq. 26, n Eq. 27, to obtain

Tl + 1+ 2

®{cosQ) = (sin B)Cn% (cos@)

v

F— (28)
Jr2r TQ T(n+ v}

Hence, inserting Eq. 28 in Eq. 13, we arrive to the
following spectral relationships:

‘ CZ(u)du

I-v
2

= lnC?(x)
’1‘X—u|u(1—u2) (29)

A, =l(n+ V0! T(v)cos(n g)]“
where, A, are called the eigenvalues of the integral

operator. For a Volterra-Fredholm integral operator, we
have,

£ 1 CZ (u)du £ ®
Y uF, — = S uwE A, CF ) >0)
= - |X7u|“(17u2) 2
(30)
Many spectral relationships can be established
from Eq. 29.

Let x = -1 in Eq. 29 and use the following relation,
(Abdou and Salama, 2004):

L L 31
2 () = (17 i (x) G

We have,
1 CZ(u)du

1-v
2

i) (D)

-t ‘xfu‘b(lfuz)

Differentiating Eq. 29 with respect to x and using the
relation:
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d
dx

—CM(x) = nCT(x) (33)

we get;

p CZ(uydu

(1-u?)

—al(n+v)CE P (x) 34)

ol = ) m-DID1+w 005(7)

el

Using the Gegenbauer

C2(x)
and Tacobi P*?_(x) relation

o TCOTHmY) e,
Clx=—2—— R T (9
v+1

PN+ =)

we have the following spectral relationships

(_1,v_1
1 FE (u)du :7\‘ TITI (X) (36)

-1

- |X —y‘u (1 —uz)T

Using the famous formulas (Gradchtein and Rezuk,
1971),

. v
LlE}F(E)C {(x)= TZH(X)
and
In———= hm(‘x y‘ )71} (37)
|X. — y‘ u—0
we arrive to the following spectral relationships
nln2 m=0
Il dy = 7T, () (3%)
X m
| Y\ J -

where T, (x) 13 the Chebyshev polynomial of the first
kind.

Solution for the system of Fredholm integral equation of
the second kind: In this study, we discuss the Toeplitz
matrix method (Abdou e al., 2003) and product Nystrom
method of Atkinson (1997) and Devles and Mohamed
(1985) to obtain the numerical solution of the system of
FIEs of the second kand (10).

Toeplitz matrix method: The idea of this method is to
obtain 2N+1 linear algebraic equations, the coefficients
matrix 1s expressed as sum of two matrices one of them 1s
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the Toeplitz matrix and the other is a matrix with zero
elements except the first and last columns (rows).
Consider the integral equation:

W) A [ kG, y)oCy)dy = £(x) (39)

Thern, assume that

[Eey)dy = 3 [A,()00)+ B, ()0 + bR, (40)

{a =nh, h:@, x =mk)
N

Here, A, (x) and B, (x) are arbitrary functions, will be
determined and R, is the error of order O¢h®). Using the
principal idea of the Toeplitz matrix, we can arrive to the
following linear algebraic system:

@(mh) = U™'f(mh),

(41)
U=u-AG,, #0
where,
G, = A, (mh)+ B, (mh), (42)
—-N<nm<N
is a Toeplitz matrix of order ZN+1,
B, (mn) n=-N
E,. =10 ~N<n<N (43)
A, {mh) n=N

represents a matrix of order (2N+1) whose elements are
zeros except the first and the last columns and T is the
identity matrix.

Definition (39): The Toeplitz matrix method 1s said to be
convergent of order r m [-a, «], if and only if for N
sufficiently large, there exist a constant D>0 independent
on N such that:

[#6x) ¢y ()] < DN (44)

The product Nystrom method: This method is described
by Atkmson (1997) and Devles and Mohamed (1585).
Consider the integral equation:

b
wo(x) = A Py (o )y dy = fixy - (45)
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where, p and § are respectively badly behaved and well
behaved functions of their arguments. According to the
product Nystrom method, the Eq. 45 takes the form:

Ho0x) A w, k(. x W ) =Fx)  (46)

where, x, =y, =a+1h,1=1, 2,..., N with

and N even. The weight functions w;; are defined as:

Win = Bl (¥ Wiam = 2YJ+1 (¥

47
Wi,Zj :a](y1)+B]+I(Yi)B W1,N :aﬂ(y) ( )
1 ¥2j
Olj(yi) = E I p(yi: ¥y - Yaj-2 Ny - y2]—1)dy
¥a2j-2 (48)
Bilyi= # P Y Yo — YHY 5 — Yy

F2i-2

1 Y2j
1= 5 [ PO~y )y - yidy

Vajz

The solution of the linear system (Eq. 46) may take
the form:

® =[pl - Aw]'F, |ul-Aw|#0 (49)

As Atkinson (1997) and Devlas and Mohamed (1985),
the integral Eq. 10 can be solved using Nystrom method.
The following numerical results are obtained, when
the exact solution ¢(x, t) = x+t and the Volterra kemnel
Fit,H=£3G({t 1=t v=08

Here, ¢',, means numerical method using Toeplitz
matrix where, R is the resulting error, while ¢ ', for the
Nystrom method and the resulting error Ry,. The dividing
interval is considered whenh=0.25t=03 andt=08,
N =40 (Table 1 and 2).

Table 1: The results, whent=0.3
X T Ry, & R,

-1.00 -0.70E+03 -0.70E-03 -0.70E+00 0.33E-05
-0.73 -0.45E+00 0.46E-04 -0.45E+00 0.83E-04
-0.50 -0.20E+00 0.33E-04 -0.20E+00 0.15E-03
-0.25 0.50E-01 0.54E-04 -0.50E-01 0.22E-03
0.00 0.30E+00 0.33E-04 0.30E+00 0.27E-03
0.25 0.55E+00 0.51E-04 0.55E+00 0.32E-03
0.50 0.80EA+00 0.47E-04 0.80E+00 0.35E-03
0.75 0.10E+00 0.41E-04 0.10E+01 0.37E-03
1.00 0.13E+01 0.14E-04 0.13E+01 0.20E-03

Table 2: The results, whent=10.8
X ¢(nmn R(T)N ¢(T)m R(T)N

-1.00 -0.20E+00 0.84E-03 -0.20E+00 0.41E-05
-0.75 0.50E-01 0.99E-04 0.50E-01 0.23E-03
-0.50 0.30E+00 0.12E+03 0.30E+00 0.41E-03
-0.25 0.55E+00 0.13E-03 0.55E+00 0.58E-03
0.00 0.80E+00 0.12E-03 0.80E+00 0.72E-03
0.25 0.10E+01 0.12E-03 0.10E+01 0.84E-03
0.50 0.13E+01 0.11E-03 0.13E+01 0.93E-03
0.75 0.15E+01 0.97E-03 0.15E+01 0.96E-03
1.00 0.18E+01 0.32E-04 0.18E+01 0.51E-03
CONCLUSION

From the results and discussions, the following may
be concluded:

¢  The contact problems of a rigid surface having an
elastic material, when a stamp of lenth 2 umt is
mnpressed mto an elastic layer surface of a strip,
which has a resistance force F (t, 1), by a variable
force p(t), in time, O<t<T<ee, whose eccentricity of
application e(t) represents a Volterra-Fredholm
mtegral equation

¢ The kind of the system of Fredholm integral
equations depends on the relation between the
number of the derivatives of F (t, T) and the external
force of resistance G (t, T), te[0, T]

»  When, there is no external force of resistance i.e.,
G (t, ) = 0, we have a system of Fredholm integral
equations of the first kind

»  The numerical method used gives us a system of
FIEs, where the solution of the system depends on
the kind of the system. For this, we use potential
theory method to solve the Fredholm system of the
first kind. And, for the second kind we use Toeplitz
matrix method and product Nystrom method

s In the numerical results we must note that: (1) when
U taken the values of 0.1, 0.22. 0.32 (v 1s called
Poisson's ratio in the theory of elasticity, the error
R(v, t, N), for the two numerical methods, follows
the inequality R(0.1,tN) <R(0.32tN) <. <R(O.&tN),
(1) Also, for the time t, when t = 0.1,0.3,... 0.8 and
fixed values v and N, we have:

R(u, 0.1, N)<R(u, 0.3, N)<R(u, 0.44, N)<R(v, 0.8, N)

(iii) Also, for increasing N and fixing v and t the error
decreases
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