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Abstract: Exponentiation 1s one of the important functions in computer arithmetic. In this study, we propose
a new method for finding the exponents of numbers. The method 1s valid for both signed and unsigned real
numbers with the exception of zero. In order to demonstrate the applicability of the proposed method, we wrote

a simple CH++ program.
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INTRODUCTION

Number representation is arguably the most
important topic in computer arithmetic. Hence, the
choice of number representation affects the
implementation cost and delay of all arithmetic operations
(Parhami, 2000).

Numbers play an important role mn computer systems.
Numbers are the basis and object of computer operation.
The main task of computer is computing, which deals with
numbers all the times (Mi Lu, 2004).

The elementary method of finding the square of a
mumber is to multiply the number by itself once, in the
case of a cube the number 1s multiplied by itself twice. For
the case that the exponent is greater than three the
number is multiplied by itself the numbers of counts of the
exponent (David, 1980). An example is shown as:
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Many researchers have worked on numbers and their
squares, cubes and exponents. Since, the basis of
mathematics comes from numbers and also exponent of
numbers being the backbone of numbers 1s generated by
a simple multiplication.

Andrews (1960) worked on magic squares and
cubes of numbers, where a simple method 1s use to
generate the square and cube of numbers. Apostol and
Zuckerman (1951) worked on the magic squares
constructed by the umform step method.

MATERIALS AND METHODS

Arithmetic operations in digital systems are usually
done 1n binary because design of logic circuits to perform

binary arithmetic is much easier than for decimal. Binary
arithmetic 1s carried out i much the same manner as
decimal, except the addition and multiplication table are
much simpler (Herman and O’ Malley, 1988).

The main idea of this study into the development of
a new method 15 derived from the conversion process of
a bmary number back imto a decimal number for
representation.

The binary number system is simply another way to
count. Tt is less complicated than the decimal system
because it is composed of only two digits (0 and 1).
Addition and subtraction is simply carried out like in the
case of a decimal number system, but it may seem more
difficult at first because it is unfamiliar to us (Trv, 2003).

Say given a binary numbers 1111 to be converted to
decimal for representation and use. The process below s
looked at in details by Charles (2004) and Thomas (1986).

1111 to convert to binary

= (1x27) + (1x2%) + (1x2) + (1x27)
=(1x8) + (1x4) + (1x2) + (1x1)

= 8442+

=15

Considering the above example, since the digits in the
binary number (say that 13 the number of ones m the
number), are four so we assume that we take two to the
power five and use the method above:

K=2"+2"+2'+2°
k=8+4+2+1 =15

but, 2* =16

From induction we say
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2 =k+ 1, butk=15
=2+ 2420 +2+1=16

and applying it to 3-5 and so on, will help us to generalize
the formulae for signed and unsigned real numbers. Let
find 3*

K in this situation will be
K=3"+3'+3"

K=9+3+1=13
but, 3 =27

Hence, from mathematical induction, using the new

method

F=2k+1
F=23+3+3"+1
=2(13)+ 1=27

Applying it to 4°

4* =3k+1
K=4'+4"=5

42 =3(4" +4M+1
=3(5)+1=16

Since, k was multiplied by two when we use 3 and

multiplied by 3 when we used 4. Then, we can say if
T 1s the number then;

T'=(T-Dxk+1
K=T'+T*+T+T"

Hence, K depends on the exponent of the number

and the value multiplied by the k depends on the number,
say T.

The above research, we can generalize the formulae

to be; this formulae works for positive exponents
R"=(R-1) (R™ + R™*+ R*™+ ... R+ 1) + 1 for positive
exponents (n) and positive and negative numbers (R).

For a negative exponent (-n) and negative or positive

numbers:

a 1
CR-DR™+R"F+R" 7+ . +R"M)+1

This study looks at finding the positive exponents as

well as the negative exponents of real number both
positive and negative numbers. Ahmed (2004) and
Henrnich (1991) have focused their study on the generation
of square of numbers.
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RESULTS AND DISCUSSION

The proposed architecture is divided into four stages.
The first stage 15 when the real number and the exponent
are all positive, the second stage when the real number is
positive and the exponent i1s negative, the third stage
when the real number is negative and the exponent is
positive and finally both the real number and the exponent
are negative. The implementation of the proposed method
1s shown as:

Positive base and positive exponent:

R*=(R-DER"+R“+R"” + - R+ ) +1
3 =303 +37 37 437 437+
=23 +37+3 +3 +30+1
=2(81+27+9+3+11+1
=2(121)+1
=242 + 1 =243

Negative base and positive exponent:

R* =R-1(R* +R™ +R™ + --- +R"™) + 1
07°=-07-1(-07" + (0.7 +(-0.77) +1
= 17¢0.70 + (0.7 + (07" + 1
=-1.7{0.79) + 1

=.0.343

Positive base and negative exponent:

1
SRR R4 R™ 4+ 4R+

-1

S 1
0.7 -0 + (0.7 + (-0 + 1
B 1
C03(2.19)+1
!
T 0343

Negative base and negative exponent:

. 1
CR-IRM™ +RTIPAR™ 4 +R™) 41
Y 1
616" (=6 T 4 (=6 (—6) )+
~ 1
- 7(-185) +1
1
1296

133



Implementation of C++ program:

# Include<iostream.h>
# mclude<math.h>

Main ()
¢

/* Read mput Data™*/
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Cout<<"Enter the value of the exponent n”<<endl,

Cin=>n;

Cout<<"Enter the number R”<<endl;

Cin=>R;,
M=0

K=1

If (n<<0)

{

n=n*(-1)
Do §

n=n-1

Do {

=n

K=K*R
r=r-1

While, (r>1)
!

m=m-+k
while (n>1)
}
R=R-1(m+1)+1
R=1/R

}

Else {

Do {

n=n-1

Do {

=n

K=K*R
r=r-1

While, (r>1)
!

m=m+k
while (n>1)
}
R=R-1(m+1)+1
}

Cout=<<" the result of R"“<<endl;

Cout<<R;
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CONCLUSION

In this brief, a new techmque of finding the
exponents of real numbers 1s derived from the conversion
of a bmary number to a decimal number. This proposed
techmque works for both positive and negative real
numbers bases and for positive and negative whole
number exponents with the exception of zero. The method
has been applied successfully in four different stages that
prove the correctness and accuracy of the proposed
method.
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