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Effect of Fluid Flow on Pressure Drop in a Porous Medium of a Packed Bed
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Abstract: The velocity variation within the porous medium depends on the structure of the packed bed. This
behaviour exhibits hydrodynamic mixing at the pore scale. The pressure drops occurring across the porous

medium 15 attributed to several factors, including form drag, viscous drag from bounding wall and mertia force.
The obtained results from this study confirm that the pressure drop is a linear function of flow velocity at low

Reynolds number regime and a quadratic function at igher Reynolds numbers. The morphological effect 1s an

additional factor in determining pressure drop.
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INTRODUCTION

Natural and menufactured porous materials have
broad applications in engineering processes, including
straighteners, heat sinks, energy
absorbers, catalytic reactors, heat exchangers, pneumatic
silencer, high breaking capacity fuses and cores of
nuclear reactors. For the subject of flow, pressure drop
and heat transfer through porous media, there have been
extensive 1nvestigations covering broad ranges of
applications since, the early research of Darcy m the 15th
century. Darcy correlated the pressure drop and flow
velocity experimentally by defining a special constant
property of the medium called permeability. However, it 1s
only applicable to low speed (creeping) flow and low
porosity saturated medium. It 15 well known that in flow
through porous media the pressure drop caused by the
frictional drag is proportional to the velocity at the low
Reynolds number range. In addition, this famous Darcy’s
law also neglects the effects of solid boundary and the
inertial forces on fluid flow and heat transfer.

Flwd trensport 1s usuvally modeled usmg the
continuum appreach in terms of appropriate averaged
parameters in which the real pore structure and the
associated length scales are neglected Moreover, those
averaged parameters can only be obtained by experiments
and are strongly mfluenced by the types of microstructure
and operating conditions. Fundamentally, they are limited
to the scope of macroscopic phenomena. Specifically, the

flow mechanical

microscopic (pore scale) dispersion effect has significant
umpacts on the mass, momentum and thermal transports.
Hence, modeling transport behavior at the pore-scale for
real engineering processes is desirable.

Mass and thermal transport in porous media, such as
ceramics, rocks, soils and catalytic channels m fuel cells,
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play an important role in many engineering and geological
processes. There are two mteresting aspects that arise in
the research of porous media. They are hydrodynamic and
thermal effects. The dynamics of fluids flow through a
porous medium is a relatively old topic. Since, the
19th century, Darcy’s law has traditionally been used to
obtamn quantitative mformation on flow in porous medium.
This law is reliable when the representative Reynolds
number is low whereas the viscous and pressure forces
are dominant. As the Reynolds number increases,
deviation from Darcy’s law grows due to the contribution
of inertial terms to the momentum balance (Bear, 1972;
Kaviany, 1991). Tt is shown that for all investigated media,
the axial pressure drop is represented by the sum of two
terms, one being linear i the velocity (viscous
contribution) and the other being quadratic in velocity
(inertial contributions). The inertial contribution is known
as Forchheimer’s modification of the Darcy’s law
{(Reynolds, 1900). Basically, the pressure drop occurring
in a porous medium is composed of two terms. Later
Beavers and Sparrow (1969) proposed a similar model for
fibrous porous media. A general expression can be
obtained from Bear (1972) and 1s widely accepted in the
Eq. 1:
dp/dx = - pu/x (1
It 1s shown that the pressure drop 1z directly
proportional to the fluid wviscosity p and inversely
proportional to the permeability of the porous medium.
Large ef al. (1997) suggested that an additional cubic term
of flmd velocity be included in the above Eq. 1 in the
regime of higher speed (R, = O (10)). Another significant
research for predicting momentum transport in porous
media 1s by Brinkman (1947). Brinkman (1947) first
ntroduced a term, which superimposed the bulk and
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boundary effects together for flows with bounding walls.
In Brinkman’s model, an effective wviscosity was
postulated from experiments performed on beds of
spheres to replace the viscosity of fluid by taking into
account of the porosity effect, where, € is the porosity.
Ha=p (1425 (1-8) @

There have been modifications on the Eg. 2 to
describe different types of porous media (Sahraoui and
Kaviany, 1993). More recently, computational modeling
has been used to provide detailed flow fields. There are
also results obtained by the asymptotic solutions

(Chapman and Higdon, 1992). In this study, velocity
variation m relation to pressure drop 1s examined.

MATERIALS AND METHODS

Numerical experiments of 2D porous flow: The schematic
of the configuration 1s shown n Fig. 1. The direction of air
flow is from left to right and the porous sample is located
in the middle of the domain (20<10 cm) to allow for a
well-developed flow before it reaches the porous sample
and in order to minimize any numerical nstability. The
distance from inlet to the front side of the porous medium,
is 9 cm, which is also about the range estimated by
Kaviany (1991). Five representative axial positions, A -A.,
as shown m Fig. 1 are selected for evaluating data and
interrogation of flow field; they are located, respectively
upstream, starting plane, mid-plane, exit plane and
downstream of the porous medium. The porous sample
length 1s 2 cm. The flow rate varies by changing the mflow
velocity u;,. The pressure drops are calculated based on
the pressure difference across the porous sample.

Several representative pore structures have been
studied. Table 1 shows structures of different porosities
with two types of geometric shapes.
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Fig. 1. Schematic of porous flow in a 2D channel and
stations for flow analysis

Table 1: Morphological characteristics of porous samples used in the
pressure drop study

No. solid Tatal No.

Shape Case Porosil d(mm) _elements elements
Sphere-like  Structure 1 0.854 3 630 47,000
Structure 2 0.890 3 454 47,000

Structure 3 0.947 3 235 47,000

Fibrous Case 4 0.830 0.75 1705 50,000
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In the case of sphere-like porous medium, r is the
radius of the sphere, while t 13 the thickness of fiber for
fibrous solid phases. The fibrous structure is composed
of slender and long fiber in sheets, in which the form drag
is much small than the circular cylinder tubes structure.
The total mumber of elements (both fluid and solid) in
Table 1 is the number of total cells used in the
computation.

RESULTS AND DISCUSSION

The numerical procedures are set to mimic the
experiments, conducted either in wind tunnel or water
tunnel. Porous samples are inserted inside a channel in
two-dimension and a duct in three-dimension to simulate
the experiments performed in the mamner described
by Hunt and Tien (1988a, b), Calmidi (2000) and
Okuyama and Abe (2000). The numerical domams used
are usually extended from the experimental one to ensure
the flow 1s fully developed before it reaches the porous
sample in a similar manner to that in a wind/water tunnel,
in which the flow is smoothed through an extended
section before the test section. This addition of an
extended domain also helps mimmize any numerical
instability. In the following simulations, a variable spacing
15 used m both X and Y directions (longitudinal plane).
Meshes close to the walls and in the porous section are
finer than the rest of domain. The smallest mesh along the
X and Y directions is on the order of 107 m.

Two-dimensional channel: The physical dimension is
20%10 cm. The porous sample has a length of 2 cm and 1s
situated in the middle of the channel, located between
x =0.09 and 0.11 m. Tts geometric structure of pores, the
distribution, location and scale are shown in Fig. 1. The
porosity 18 0.83. The computed results are sampled and
presented at 5 locations along the X direction as shown
in Fig. 1. The notation, A,-A;, correspond to locations at
x =0.05,0.09, 0.1, 0.11 and 0.15 m, respectively (porous
region lies between A, and A,). Several different porous
structures are analyzed. The aim is to study how the
structure of porous medium plays a role in the mass
transport and momentum transport, especially the
pressure drop. Numerical studies are performed in a range
of Reynolds mumber, R, ~ 0.5-320. A typical inflow
velocity is in the range of 0.1-1.0 m sec™". At the inlet, the
fluid enters with a specified mass flow rate and
temperature, m and T, respectively.

Pressure drop and porosity: Non dimensional pressure
drop of various porous systems are shown in Table 2. The
effects of solid shape and permeability on the sphere-like
and fibrous structures are shown in Table 3.
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Table 2: Summary of some works in evaluating viscous resistance (pressure drop) in porous media

Asgsumption References

Forrmulation and method

Major results

Periodic porous media, low
Reynolds number flow
Incompressible, low
Reynolds number flow

Larson and Higdon (1992)

Verger and Ladd (1999)

Periodic porous media,
low Reynolds number flow
Incompressible, low
Reynolds number flow

Chapman and Higdon (1992)

Martys and Hagedorn (2002)

Incompressible, low Reynolds  Sangani and YVao (1988)

Solving stokes flow with a periodic grain
consolidation model, collocation method used
Solving stokes flow, Lattice-Boltzann
method used

Solving unsteady stokes equations,

oscillatory pressure gradient imposed
Solving Brinkman equation for stokes
flow, Lattice-Boltzmann method used

Stokes flow equation

Excellent accuracy, moderate
computational effort

Study of the convergence of the
permeability as a function of grid
resolution for random arrays of
spheres-a second order approach

A study in the dynamic permeability and
acoustic propagation in porous medium
Evaluating permeability in multiple pore
size material -low porosity, using

parallel computing technique
Longitudinal permeability a

Table 3: Non-dimensional pressure drop (P*) of various porous systems
against the modified Reynolds number

Reynold No. £=10.85 £=0.89 £=094 £=0.85
Raa p# p# p# P
14 14.50 12.60 7.80 17.60
20 15.00 15.00 7.80 22.00
27 19.50 17.60 8.80 27.00
34 22.00 20.00 10.00 31.00
42 24.00 22.60 10.80 36.00
48 26.00 25.00 12.00 40.00
55 28.00 27.60 13.00 45.00
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Fig. 2: Non-dimensional pressure drop P* vs. R, in a
wide range of Reynolds numbers for 2 values of
porosities

The non-dimensional pressure gradient parameter is
defined by P* = (Ap/L) I*/uu,. Here, Ap/L is the overall
pressure gradient and d 1s the characteristic sohd size.
Here, Ap/L (Ap = p (A) - p (A;)) 18 the coefficient of
viscosity and w, is the approach velocity. Note, the
non-dimensional pressure gradient parameter
equivalent to the dimensionless permeability, ¥/1>. The
variable P* 1s used instead in the following discussion. In
Table 3, it is evident that the sphere-like structure causes
higher pressure drop than the fibrous structure.

The Pressure drops (P*) with respect to the flow
conditions (R} are shown in Fig. 2 and 3 for two values
of porosity. Figure 2 shows the behaviour over a large
range of Reynolds numbers in which the behaviour in low

i
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Fig. 3: A close-up view of the non-dimensional pressure
drop P* vs. R, exhibiting different behaviors
caused by varying porosity €

Reynolds number range is shown in a close-up view in
Fig. 3. One shows P* approaches a value near 10 as
Reynolds tends to zero and there is a larger range where
P varies linearly with Reynolds number; this means that
the pressure gradient varies as the square of the approach
velocity. Thus, the Darcy limit and Forchheimer flow
are observed. Moreover, the morphological effect is
insignificant if flow is in the low Reynolds number range.

CONCLUSION

The pressure drop is an accumulated result of all
factors described m this study and 1t has been
quantitatively predicted at various porosity and
topography of different porous media.
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