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Abstract: The motion of a viscoelastic, incompressible flow of an upper-convected Maxwell fluid, due to the

motion of a long, straight, solid, circular cylinder, oscillating both longitudinally and torsionally with different
frequencies is examined. The flow is considered to be fully established and so start up effects are ignored.
Analytical expressions for the velocity field, the tangential drag and the work done by the drag force have been
obtained and the corresponding Newtonian cases deduced. The velocity components and work done are

displayed graphically using particular values of the flow parameters. These are compared with Newtoman fluids

0 as to get some msight mnto the effects of elasticity.
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INTRODUCTION

There are many fluids which cannot be explamed by
the classical Newtoman theory, some of these fluids are
known as non-Newtonian fluids. Viscoelastic fluids fall
into such a class, exhibiting both viscous and elastic
characteristics; consequently, they have a time dependent
strain. In order to determme their stress and strain
interactions, as well as their temporal dependencies, they
need to be modelled. One such fluid model is that known
as the Upper Convected Maxwell fluid, U.C. M. (Petrie,
1979).

Casarella and Laura (1969) investigated the motion of
a viscous fluid due to a circular cylindrical rod immersed
m it, which was mfinite in length and undergomg
longitudinal and torsional oscillations of the same
frequency. They were primarily interested in the drag
force acting on the rod as this is of practical significance
In many ocean engineering problems. Rajagopal (1983)
examined a similar problem for a non-Newtoman fhud, that
is, a fluid of second grade and like Casarella and Laura
(1969) obtained an exact solution for the field equation.
Ramkissoon and Majumdar (1990) examined the
corresponding mntemal flow problem for viscous fluids,
they obtained an exact solution for the flow field and
explicit expressions were given for the shear stresses, the
drag experienced by the cylinder and the drag coefficient.
Ramkissoon ef al. (1991) examined the same problem as

Casarella and Laura (1969) but for a Polar fluid, here an
exact solution was obtained for the wvelocity field.
Rahaman (2004, 2005) examined the same problems as
Casarella and Laura (1969) and Ramkisscon and Majumdar
(1990), but for an Upper Convected Maxwell fluid, explicit
expressions were obtained in each case for the velocity
field, shear stresses and drag. Owen and Rahaman (2006)
examined the corresponding internal flow problem for an
Oldroyd-B  fluid, but subjected to torsional and
longitudinal oscillations of different frequencies, explicit
expressions were obtained for the velocity field, shear
stresses and drag,.

The main objective of this research is to investigate
the motion of a viscoelastic, incompressible flow of the
Upper Convected Maxwell flnd, due to a long, straight,
solid, circular eylinder, oscillating both longitudinally and
torsionally at different frequencies and in the absence of
body forces. As in previous research done, the flow is
considered to be fully developed. Analytical expressions
for the velocity field, the tangential drag and the work
done by the drag force have been obtained and the
corresponding Newtonian cases deduced In obtaining
the analytical solutions for the velocity components, it
was assumed that they had the frequencies of the
velocities of the corresponding boundary components.
Some numerical work is done and comparisons made with
Newtoman fluids so as to get some nsight mto the effects
of elasticity.
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GOVERNING EQUATIONS

Using the rheological equation of state for the upper
convected Maxwell fluid 1s given by:

T=-pl+8 (1

§+A§:2MQ (2)

T = The total stress.

S = The extra stress tensor.

D = The deformation rate tensor.
P = Anisotropic pressure.

A = The relaxation time.

i = The viscosity coefficient.

= Represents the upper-convected denvative,
defined by:

vy o

§5=8= o q*s',, 8%, 8¢, 3

The unsteady flow of the viscoelastic, mcompressible
upper convected Maxwell fluid is characterised by the
longitudinal and torsional oscillations of the cylindrical
rod with velocity,

q, = q,cos (Qt)cos (B)é +q,cos(Ct)sin(B)z (4

Where:

qy = The magnitude of the oscillations.

€, = The frequency of the torsional oscillation.

€, = The frequency of the longitudinal oscillation.

B = Can be interpreted as the angle which the
boundary velocity, 9, makes with the § -direction.

Tt should be noted that if p = O the cylinder has purely
torsional oscillations and when B = 1/2 the oscillations are
purely longitudinal.

The dynamic equation 1s:

dg )
VeS-Vp=p—=
STVPER
while, the continuity equation 1s,
Veg=0 (6)

Working in cylindrical polar co-ordinates (R, 0, z),
with the z-axis coinciding with the axis of the cylinder, we
take the pressure field to be independent of the § and z
co-ordinates and the velocity field to be of the form:
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qR,D=v(R,D)0+w(R,t) 2 (7)

Substituting Eq. (7) into the constitutive and dynamic
Eq. 2 and 5, leads to the following equations,

o8 N v
S+ A ey = (8)
" ot “’[aR R]
28 ow
S, + A2 = 22 ()
e a R
2 as v
=S, re _ Y (10)
R R at
1 a3 ow
_S +_Rz = N— (11)
R R P
as v
S%H{ asezsReaR}—o (12)
PP Lo (13)
R 8RR

Elimmating the stresses from Eq. (8) and (10) gives
the equation of motion for the §-component of the

velocity field,

o v
—=v -+
ot R

Similarly, using Eq. (9) and (11), the equation of
motion for the § -component is,

Jrl@ — A
R JR

By solving Eq. (14) and (15), the velocity components
can be determined. Tt should be noted that setting the
elastic parameter A = O gives the goveming equations for
classical fluids. Once the velocity field 15 determined the
pressure field can be found using the Eq. 10, 12 and 13.

2

(14)

&w
ot?

W_U(@ZW (15)
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STATEMENT AND SOLUTION OF THE PROBLEM

Consider a long, straight, solid, circular, cylindrical
rod, of uniform cross section, of radius a, oscillating both
longitudinally and torsionally with different frequencies,
i an Upper Convected Maxwell fluid. In the analysis of
this problem, it was assumed that the rod was infinite in
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length, the flow was fully established, the fluid is at rest
at infinity and there were no external forces acting on the
rod.

We need to examine the flow of the fluid subject to
the following kinematic conditions,

v(a,t) = g cos (t) cos(B) 6 (16)
w(a,t) = q, cos (Q;t)sin(p) 2 17)
V(R,t)>0as R - (18)
W(R,t)—>0as R —> (19)

Note that on substituting Eq. (7) into (6) gives the
contimuty equation being automatically satisfied.

Assuming that v (R, t) and w (R, t) are of the form %
[f (B, where, j = 1, 2, respectively for v (R, t), w (R, t)
and ‘> represents the real part of the expression, the
solutions of Eq. 14 and 15 subject to 16-19 are,

_q Bi(v:R) it (20
v(R,t)=%R K. a) }qu cos(B3)
and
_ g K R) ap (21)
w(R,1) 9{71{0 o }qn sin(B)
where,
iQ - Q7. (22)

EE

and K (x) 1s the modified Bessel function (Watson, 1952),
of the second kind of order n.

The velocity field has therefore been determined.
Note, on taking the elastic parameter A = 0, the result
reduces to the Newtonian case (Casarella and Laura,
1969). With the aid of Eq.20and 21 and on utilizing
8 and 9, the shear stresses on the cylinder are found to be,

L

it

2
Yl KD (Yl a) + gK1 (Y1 a) 1

[~}
K,{y a)

B
1+iQA hageos ()

(23)
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e

The tangential drag D acting on the cylinder per unit
length is (Casarella and Laura, 1969):

1ta

T Ky,
K, (y,a)

e
1+i8 A

ﬂ ug, sin (B) (24)

D= -2ma(S,.0+ 5,2 |._. (25)

Substituting Eq. (23) and (24) into Eq. (25) gives,

[YIKD(Y@)+§J A
K (va) a/l+iQA

iyt
v, K (y,a) sin(B)%
K, (v,2)
The work done, W,, by the drag force, D on the fluid
per half-cycle of torsional and longitudinal motion is
given by:

it

os (B)6+

D = 2papq, R (26)

&
1+iQ,A

(27)

where, ] = 1, 2 refer to the torsional and longitudinal
motions, respectively.
Substituting Eq. 4 and 26 into Eq. 27 gives,

2
YIKU(Y‘a)+z COS_ (B)i(Qle)+
K (va) a)1+iQA
W, = naqiun v
YzK1(Yza) 8111 (B) i(Q O )
. audy
K, (y,a) J1+iQ !
(28)
where,
(aWe) 2je ‘cos(Qt)dt =
’ (29)
€2 cos B —— |+ w1, cos’ uix +i6d,
Q QJ
NUMERICAL RESULTS AND
CONCLUDING REMARKS

In order to mvestigate the effects of elasticity,
comparisons between the U.CM. and Newtonian fluids
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Fig. 1: Behaviour of the §-component of velocity for
the U.C.M. fluid
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Fig. 2: Behaviour of the §-component of velocity for
the Newtonian fluid

were made for the velocity components and the work
done by the drag force, for the different oscillation
frequencies Q, and Q,. Here, the values taken are, a = 1,
v = 0.1 and A = 0.3, these are the same as those selected
by Rahaman (2005) and Owen and Rahaman (2006) the
frequencies considered were Q, = 3.6 and Q, = 1.

The behaviour of the velocity profiles of the §-
component are displayed in Fig. 1 and 2 for the U.C.M.
and Newtonian fluids respectively. It can be observed
that as one moves away from the cylindrical rod, the § -
component is damped out quicker for Newtonian fluids
than that of U.C.M. fluids. Also, the U.C.M. flow is
reversed many more times than that of its corresponding
Newtonian case.

From Fig 3 and 4, it is also observed that the
behaviour of the Z-component for the Newtonian fluid
appears to be damped out quicker that than of the U.C.M.
fluid, but not as drastic as that observed for the §-
component. These velocity profiles are symmetric about
axes of zero velocity and in particular, symmetry is
observed at times t = 0, ©/Q, and t = ©/2Q,, 37/2Q..
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Fig. 3: Behaviour of the Z-component of velocity for
the U.C.M. fluid
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Fig. 4: Behaviour of the Z-component of velocity for
the Newtonian fluid
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Fig. 5: Behaviour of the §-component of velocity at
t =T for the Newtonian and the U.C.M. fluids

Figure 5 and 6 show the behaviour of the velocity
profiles for the § and Z -components at a particular time
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Fig. 6: Behaviour of the Z -component of velocity att =
T for the Newtonian and U.C. M. fluids

Fig. 7. Behaviour of the work done by the drag force per
unit half cycle of the torsional motion for
Newtonan and U.C.M. fluids
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Fig. 8 Behaviour of the work done by the drag force per
unit half cycle of the longitudinal motion for
Newtonian and U.C.M. fluids
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as considered by Owen and Rahaman (2006). In both
cases, it can be seen that the components are damped
out quicker for the Newtoman fluids than that of the
UCM. fluids. Flow reversal is observed for each
componernt.

Figure 7 and 8 display the behaviour of the work
done by the drag force per umt half cycle of the torsional
and longitudinal motion respectively, as [ varies from
0 to /2. For the torsional motion, the magnitude of work
done for the U.C.M. flud 1s wutially larger than that of the
classical fluids, however, this changes as p increases. For
the longitudinal motion, the magnitude of work done for
the U.CM. flud 1s imtially smaller than that of the
classical fluids but this also changes as P increases.
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