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Abstract: Meta-heuristics, are increasingly being applied by many researchers to solve scheduling problems.

In this study, we discuss 5 unique characteristics of meta-heuristics that have endeared them to researchers.

These are: ability to escape local optima, obtamn better solution quality, solve larger mstances of problems,
suitable for multi-objective scheduling problems and have wide applicability.
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INTRODUCTION

Scheduling deals with the problem of allocating
resources (machines) over tume to perform a number of
tasks (jobs) with the aim of minimizing cost or maximizing
profit. The problem is essentially that of decision-making.
However, because of the complexity of the cost function,
secondary (performance which
correlate strongly with costs are usually utilized in
evaluating the performance of solution methods.

criteria measures ),

Scheduling problems are combinatorial m nature
(French, 1982; Lung and Roert, 1993). As an example, for
the n jobs, m machines (n*m) problem, the number of
possible schedules is (n!)™ This may look tractable when
n and m have small values. However, as the values of n
and m increase, the problem becomes complex. Tt is
computationally difficult to enumerate all the possible
schedules and select the best based on some objective
(performance) measures in good time.

There are basically, 2 methods of solving scheduling
problems (Ehrgott and Grandibleux, 2000). These are:
Exact and approximation methods. Exact methods yield
optimal solutions (e.g., total enumeration method,
Hungarian method, Johnson’s method for 2-machine
sequencing, implicit enumeration method such as branch
and bound or dynamic programming methods).

The approximation method, on the other hand,
mvolves the use of heuristic algorithms. These usually
involve the use of intuitive approaches or rule of thumb.
The Heuristic methods are techniques for obtaining

acceptable solutions to scheduling problems at a

reagsonable computational cost. While, they do not always
guarantee optimal results, the techniques are relatively
economical m terms of computational resources utilized.

Since, real-life problems can have larger values of n
and m, the difficulty in solving scheduling problems by
total enumeration (exact method) becomes obvious. The
computational complexities associated with the factonal
nature of the possible schedules, however, prohibit a
practical solution to large sized problems. Tt is evident
from, the above that scheduling problem (s), especially
when n and m are large, can take a whole life span to
solve.

As a result of the difficulties and computational
complexities involved in obtaining optimal solutions to
scheduling problems (even the simplest form of the single
machine case), research efforts have been directed
towards the development of heuristic algorithms.
Generally, heuristics have the problem of being trapped in
a local optimal solution. This has led to the emergence
of meta-heuristics. Given that meta-heuristics attempt
to avoid being trapped in local optima, researchers
apply them to solve scheduling problems more and
more. Meta-heuristics provide a way of considerably
iumproving  the performance of simple
procedures. They have been developed to solve complex
optimization problems in many areas, with combinatorial

heuristic

optimization being one of the most fruitful (Laguna,
2002; Puchinger and Raidl, 2005).

In this study, 5 common types of meta-heuristics are
described. Also, discussed are 5 unique characteristics of
meta-heuristics which has endeared them to researchers.
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META-HEURISTICS

Meta-heuristics contams all heuristics methods that
show evidence of aclieving good quality solutions for
the problem of interest within an acceptable time. Meta-
heuristics (also written as metaheuristics) are heuristic
methods for solving a very general class of computational
problems by combining traditional heuristics methods in
a hopefully efficient way. A meta-heuristic refers to a
master strategy that guides and modifies other heuristics
to produce solutions beyond those that are normally
generated in a quest for local optima.

Heuristics guided by such a meta-strategy may be
high level procedures or may embody nothing more than
a description of available moves for transforming one
solution into another, together with an associated
evaluation rule (Laguna, 2002; Sevaux, 2003; Bonissone,
2003). The word meta means beyond or of higher level.
Generally, metaheuristics are applied to problems for
which there 13 no satisfactory problem-specific algorithm
or heuristic or when it is not practical to implement such
a method.

Types of meta-heuristics: Meta-heuristics can be
classified into 2 classes; population-based methods and
point-to-point methods (Osman and Laporte, 1996). In the
latter methods, the search invokes only 1 solution at the
end of each iteration {rom which the search will start in the
next iteration. On the other hand, the population-based
methods invoke a set of many solutions at the end of each
iteration. Most commonly used metaheuristics are Genetic
Algorithm (GA), Memetic Algorithm (MA), which are
examples of population based meta-heuristics, Tabu
Search (TS), Sunulated Ammealing (SA) and Ant Colony
Optimization (ACO), which are examples of point-to-point
meta-heuristics.

Genetic Algorithm (GA): A Genetic Algorithm (GA) is a
procedure that tries to mimic the genetic evolution of a
species. GA simulates the biological processes that allow
the consecutive generations in a population to adapt to
their environment (Yaohua and Chi-Wai, 2007). The
adaptation process 1s mainly applied through genetic
mheritance from parents to children and through survival
of the fittest. Therefore, GA is a population-based meta-
heuristic. GA starts with an initial population whose
elements are called chromosomes. The chromosome
consists of a fixed number of variables which are called
genes. In order to evaluate and rank chromosomes in a
population, a fitness function based on the objective
function 1s defined. Three operators (selection, crossover
and mutation operators) are specified to construct the
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complete structure of the GA procedure. The selection
operator has the responsibility of selecting an
intermediate population from the current one in order to
be used by the other operators (crossover and mutation).
In this selection process, chromosomes with higher
fitness function values have a greater chance to be
chosen than those with lower fitness function values.
Pairs of parents mn the mtermediate population of the
current generation are probabilistically chosen to be
mated in order to reproduce the offspring. In order to
increase the variability structure, the mutation operator 1s
applied to alter 1 or more genes of a probabilistically
chosen chromosome. Finally, another type of selection
mechanism is applied to copy the swrvival members from
the current generation to the next one.

Standard genetic algorithm

Step 1 initialization: Generate an initial population P,. Set
the crossover and mutation probabilities p, (0, 1) and
Pw (0, 1), respectively. Set the generation counter t = 1.

Step 2 selection: Evaluate the fitness function F at all
chromosomes in P,. Select an intermediate population P
from the current population P,.

Step 3 crossover: Associate a random number from (0, 1)
with each chromosome in P! and add this chromosome to
the parents pool set SP, if the associated number 15 less
than p.. Repeat the following Steps 4 and 5 until all
parents in SP, are mated.

Step 4: Choose 2 parents p, and p, from SP,. Mate p, and
P, to reproduce children ¢, and c;.

Step 5: Update the children pool set SC, through SC, = SC,
v {c,, ¢;} and update SP, through Sp, = SP, - {p,, p,}.

Step 6 mutation: Associate a random number from (0, 1)
with each gene m each chromosome mn P/, mutate this
gene 1if the associated number is less than p,, and add the
mutated chromosome only to the children pool set SC..

Step 7 stopping conditions: If stopping conditions are
satisfied, then terminate. Otherwise, select the next
generation P, from P,uw SC. Set SC, to be empty, set
t=t+1 and go to Step 2.

Memetic Algorithm (MA): Algonthms with closer a
analogy to cultural evolution than to biological evolution
are Called Memetic Algorithms (MA). MA is an example
of a population-based meta-heuristic. Basically, MA
with

combines local search heuristics Crossover
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operators. They are inspired by models of adaptation in
natural systems that combine evolutionary adaptation of
populations of mdividuals with individual learmng within
a lifetime (Flewury et af., 2005). Under different contexts and
situations, MAs are also known as hybrid evolutionary
algorithms (HEA).

MA 1s based on a population of agents and has
proved to be of practical success in a variety of problem
domains. They constitute one of the most successful
approaches for combinatorial optimization in general and
for the approximate solution of NP-Hard Optimization
problems in particular (Yavuz et al., 2006). MAs are
concerned with exploiting all available knowledge about
the problem under study. They also combine global and
local search by using an Evolutionary Algonthm (EA) to
perform exploration, while, the local search method
performs exploitation.

Standard memetic algorithm (in pseudocode)
Begin

itialize population;

for each individual do local-search individual;

repeat

for individual =1 to # crossovers do
select two parent individuall, individualZiin
population randomly;

individual3: = crossover(individuall ,individual2);
individual3: = local-search{individual3),
add individual i3 to population;
end for;
for individual=1 to # mutations do
select an individual of population randomly;
individual {m}: = mutate(individual),
individual {m}: = local-search(individual {m});
add individual {m} to population;
end for;
population: = select(population);
if population converged then
for each individual of best populations
do mdividual: = local-search (mutate (individual ),
end for
end if
until terminate = true;
end for
end

Simulated Annealing (SA): Simulated Annealing (SA) 1s
a variant of meta-heuristics which successively generates
a trial point in a neighborhood of the current solution and
determines whether or not the current solution is replaced
by the trial pomt based on a probability depending on the
difference between their function values (Ku and Karimi,
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1991). solution can
theoretically be guaranteed only after an nfinite number
of iterations controlled by the procedure called cooling
schedule. The mamn control parameter in the cooling
schedule 1s the temperature parameter T. The role of T 18
to let the probability of accepting a new move be close to
1 i the earlier stage of the search and to let it be almost

zero in the final stage of the search.

Convergence to an optimal

Standard simulated annealing algorithm

Step 1 initialization: Choose an initial solution x, and fix
the cooling schedule parameters; initial temperature T,
epoch length M, cooling reduction ratio 4 (0, 1) and
minimum temperature T . Set the temperature T = T, and

k=0

Step 2 epoch loop: Repeat the followmg steps (3-5) M
times.

Step 3: Generate a trial point v, in the neighborhood of
the current solution x,.

Step 4: Evaluate f on the trial point y, and compute
p = 1,if f (v <f (x.); or p = exp(-D/T), otherwise, where
Df = f{y)-1{x,).

Step 5: Choose a random number u from (0, 1). If p =y, set
X = Vi Otherwise, set x,,, = x,. Setk =k + 1.

Step 6 termination condition: If the cooling schedule 1s
completed (T = T_,), terminate. Otherwise, decrease the
temperature by setting T = AT and go to step 2.

Tabu Search (TS): Tabu Search (TS) 1s a meta-heuristic
method. The main feature of TS is its use of an adaptive
memory and responsive exploration. A simple TS
combines a local search procedure with anti-cycling
memory-based rules to prevent the search from getting
trapped 1n local mimma TS restrict returning to
recently visited solutions by constructing a list of
recently visited solutions called Tabu List (TL). In each
iteration, TS generates many trial solutions m a
neighborhood of the current solution. The trial solutions
generation process is composed to avoid generating
any trial solution that is already recently wvisited. The
best trial solution found among the generated solutions
will become the next solution. Therefore, TS can accept
uphill movements to avoid getting trapped in local
minima. TS can be terminated if the number of iterations
without any improvement exceeds a predetermined
maximum number.
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Standard tabu search algorithm:
Step 1: Choose an initial solution x;. Set the Tabu List
(TL) to be empty and set the counter k = 0.

Step 2: Generate neighborhood moves list M (x,) = {x: x';
N (x,)}, based on tabu restrictions, where N (x,) is a
neighborhood of x,.

Step 3: Set %, equal to the best trial solution in M (x)
and update TT..

Step 4: If stopping conditions are satisfied, termmate.
Otherwise, go to step 2.

Ant Colony Optimization (ACO): Real ants have
developed an efficient way of finding the shortest path
from a food source to their nest without using visual
information. While, searching for food, ants deposit
pheromone on the ground and follow, in high probability,
pheromone previously deposited by other ants.
Assuming a single food source, more than one way to
reach the source and initially equal probability for an ant
to choose a path, more ants will visit the shortest path on
average and therefore, pheromone accumulates faster if
they walk with approximately the same speed. If new ants
arrive at a point where they have to decide on one or
another path they prefer to choose the shorter path with
higher probability. This in tum increases the pheromone
on the shortest path such that after a, while all ants will
choose the shortest path (Auer et al., 1999).

The Ant Colony Optimization (ACO) 1s mspired by
the behavior of real ants. In the ACO algorithm, the
solution to a combinatorial optimization problem is
constructed by agents (ants), which choose the values for
the decision variables constituting a feasible solution.
Each choice 1s (in analogy to real ants) a probabilistic
choice proportionate to a global variable representing the
amount of pheromone. ACO is one of the most successful
techniques of the wider field of swarm mtelligence. Since,
the first ACO algorithms proposed about 15 years ago,
there have been many significant contributions on
algorithmic variants, challenging application problems and
theoretical foundations (Mamiezzo et al., 2004). These
have established ACO as a mature, high-performing meta-
heuristic for the solution of difficult optimization
problems.

Standard ant colony optimization algorithm (in
pseudocode):

Choose the number N of ants;

Set Nt: = number of keys;

Set N¢: = number of combination character sets,
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Set I: =length of a text string;
Initialize the matrix of pheromones P[Nt][N¢];
Repeat
Create N text strings S[N][1];
Create N empty keyboards sets T[N][Nt];
Forl: =1toldo
Fork:=1toN do
¢ = S[k][l;
If letter ¢ was not already treated by ant k then
Choose a position p for ¢;

TIk]lp]: = <.
Evaporate P[p][c];
EndIf;
EndFor;
EndFor;

Forallants k: =1 to N do
Evaluate the result for the ant k;
EndFor;
Choose the best results;
Update P[ 1[ 1
Verify Min-Max of P[ ][ ], modify if necessary;
Until satisfying result.

Unique characteristics of meta-heuristics: Meta-
heuristics are perhaps the most exciting development in
approximate optimization technicques of the last 2 decades.
They have had widespread successes in attacking a
variety of difficult combmatorial optimization problems
that arise in many practical areas (Knowles and Come,
2000; Laguna, 2002). This explains, why there has been
widespread adoption of metaheuristics for solving many
instances of scheduling problems. But what are the
factors responsible for this level of successes and
increasing adoption of metaheuristics? Why have they
become so useful to researchers working on combinatorial
problems? A review shows 5 umique characteristics of
metaheuristics.

Meta-heuristics avoids being trapped in local optima:
Because of the high computational resources required by
exact methods in obtaining solutions to many scheduling
problems, researchers prefer the use of approximation
methods such as heuristics methods. Although, heuristic
methods obtams solution to scheduling problems within
a reasonable time, while utilizing less computational
resources, sometimes the answers they give are absurdly
bad. Generally, heuristics are myopic because they
construct schedules based on limited or local mformation
without considering the consequences of implementing
those schedules. Tn an attempt to improve the solution to
a problem, a number of heuristics employ some local
search strategies to search the neighbors of the imtial
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solution. Tn many cases, with a good start and a good
exchange rule, the near optimal (local optimal) solution
you get 1s good enough. However, in most cases one may
be stuck with a bad one, to escape local optimality may be
difficult. This is one of the major drawbacks of heuristic
methods. This has led to the emergence of meta-
heuristics.

Meta-heuristics mamly invoke exploration and
exploitation search procedures in order to diversify the
search all over the solution space and intensify the search
in some promising areas. Therefore, meta-heuristics are
not easily entrapped in local minima. Meta-heuristic
methods begin with one or more initial solutions {called
population) and employ intelligent search strategies that
try to avoid local optima. While, the search for better
solutions m the commonly used heuristics often
terminates at a local minimum due to their greedy nature,
metaheuristics can climb hills (i.e., accept moves that
generate solutions of highercost than the present one)
and thus be able to dig itself out of a local mmimum to
search for better minima (Ku and Karimi, 1991).

Meta-heuristics obtain better solution quality: Asagamst
the traditional heuristic methods, meta-heuristics has the
capacity and ability to produce better and improved
solutions. There are 2 factors that are responsible for this.
These are mitial solution and the move mecharusm of the
meta-heuristics. Many meta-heuristics generate mitial
solutions that are population-based (i.e., the starting
solution consists of a number of schedules). They also
employed population-based strategies to mampulate a
collection of solutions rather than a single solution at
each stage. Constructing new solutions from either an
mnitial one or previous ones by exploring the neighbors of
the old solutions is called the move mechanism. Most
meta-heuristic methods also utilize multiple heuristics to
generate new population members. This incorporation of
multiple heuristics for generating trial solutions, as
opposed to relying on a single rule, helps meta-heuristics
to obtain solutions of higher quality than their traditional
heuristic counterparts.

Meta-heuristics can solve larger instances of problems:
Another major characteristic of meta-heuristics 15 their
ability to solve large instances of scheduling problems.
Many meta-heuristics use elegant termination conditions
such as maximum time available, maximum number of
iteration ete. in their exploration strategy. This 1s achieved
by setting a time limit or number of iterations within which
the meta-heuristics can carry out extensive search of the
solution space. One major drawback of traditional
heuristics 1s that as the problem size grows, the quality of
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solution obtained becomes poor. But giving a time or
iteration limit to meta-heuristics to explore and exploit the
search space allows them to still obtain good solutions for
larger instances of scheduling problems.

Some researchers who have applied meta-heuristics
to scheduling problems corroborated this by submitting
that Meta-heuristic methods can provide near-optimal
solutions within moderate or acceptable computing time.
Therefore, meta-heuristic methods have been found to be
more suitable for large-size problems (He and Hui, 2007,
Schittekat et af., 2007). Their experimental result showed
that the proposed meta-heuristic (GA method) found
much better solutions than the Random Search (RS) and
Mixed-Tnteger Linear Programm ing (MILP) model for the
large-sized instances. Also, Ku and Karimi (1991) reported
that the proposed SA method appeared very attractive as
a method for solving large-scale scheduling problems in
batch processes.

Meta-heuristics are suitable for multi-objective
scheduling problems: The purpose of multi-objective
scheduling is different from that of single objective
scheduling: In the latter, the goal is to find the best
solution, which 1s the schedule that minimizes (or
maximizes) the objective function. In contrast, in multi-
objective scheduling there is no single solution that
mimimizes (or maximizes) all the objective functions at
once. Indeed, the objective functions often conflict, as a
schedule that decreases one objective will increase
another. There are, usually more than one solution
(schedule) to multi-objective scheduling problems
(Nagar et al., 1995).

In recent years, meta-heuristics have been applied
more and more to multi-objective problems. Undoubtedly,
they are well qualified to tackle problems of a great
variety. This asset, coupled with the possession of a
population, seems to make them particularly attractive for
use in multi-objective problems, where a number of
solutions approximating the Pareto front are required
{(Knowles and Corne, 2000). Some theoretical justification
for the use of evolutionary algorithms in multi-objective
optimization, in the form of convergence proofs, has been
provided by Rudolph (1998a, b). Also, there has been a
growing research effort in the use of meta-heuristics
within the field of Multiple Criteria Decision Making
(MCDM), a branch of operations research (Knowles and
Corne, 2000).

Meta-heuristics have wide applicability: Most traditional
heuristics are designed for a given problem; hence, they
are limited i scope of application. The ability of the meta-
heuristics to extensively explore the search space and
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exploit solutions that have been found makes them
applicable to very wide classes of scheduling problems.

CONCLUSION

Developments in the areas of meta-heuristics in
recent times are enormous and on the mcrease. Many
researchers m the area of production scheduling are
applying meta-heuristics to many scheduling problems
that have been classified as NP-hard. In this study, we
have highlighted 5 umque characteristics that have made
meta-heuristics the bride of researchers working on
combinatorial optimization problems. This study serves as
an eye opener for researchers to explore meta-heuristics
for scheduling problems. It 1s also, the desire of the
authors to embark on a further research on (development
of) meta-heuristics for many scheduling problems that are
still classified as NP-Hard.
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