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A New GCPW-Fed Fractal Printed Monopole Antenna Based on Tent
Transformations for Modern Communication Systems
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Abstract: In this study, a reduced size, low profile multiband printed GCPW-fed monopole antenna is presented
as a candidate for use in multi-functions wireless communication systems. The proposed fractal antenna
structure is based on the tent transformations. The self-similarity of the resulting monopole antenna
substructures results in a multi-resonant behavior. To provide a wideband impedance matching and bandwidth
enhancement to the antenna performance a grounded coplanar waveguide (GCPW) feed technique has been
used. Theoretical performance of monopole antennas based on 1st and 2nd iterations of this fractal geometry
has been calculated using a method of moments (MoM) based software, IE3D, from Zeland Software Inc.
Results have shown that the proposed monopole antenna design possesses a multi-band resonant behavior
with adequate radiation performance with VSWR < 2 (return loss<-10 dB) throughout the resonating bands.
An attempt has been carried out to correlate the proposed antenna dimensions with its resonant frequencies,
to serve as an approximate aid in the initial design stage. This makes the presented antenna suitable for use in
the modern multi-functions compact communication systems.
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INTRODUCTION

The word fractal comes from Latin fractus, which
means broken lines and Mandelbrot (Mandelbrot, 1983)
first used it. Mandelbrot defined a fractal as a rough or
fragmented geometric shape that can be subdivided in
parts, each of which is (at least approximately) a reduced-
size copy of the whole. Euclidean geometries are limited to
points, lines, sheets and volumes and assigns an integer
number to describe the dimension of each of these
geometries; where the dimension of a point is zero and 1,
2 and 3 are the dimensions of the line, sheet and volume,
respectively. Fractal geometry describes objects in nature
by dimensions, which are not conditionally integer
numbers as the Euclidean geometry implies. Euclidean
geometries can be considered as special cases from the
more general fractal geometries.

Fractals can be either random or deterministic. Most
fractal objects found in nature are random, that have been
produced randomly from a set of non-determined steps.
Fractals that have been produced as a result of an
iterative algorithm, generated by successive dilations and
translations of an initial set, are deterministic.

Fractals are characterized by the self-similarity, the
fractional dimension and space-filling properties. The

n=3 n=4

Fig. 1: The first four iteration levels to generate the Peano
pre-fractal curve

concept of a fractal is most often related with geometrical
objects satisfying the criteria of self-similarity. Self-
similarity means that an object is composed of sub-units
and sub-sub-units on multiple levels that statistically
resemble the structure of the whole object. These
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n=3

Fig. 2. The first four iteration levels to generate the
Hilbert pre-fractal curve

substructures are exactly of the shape as the original
but it may be flipped, rotated, or stretched depending
on the generation process producing the fractal shape.
Figure 1 and 2 demonstrate this property through the
generation process of well-kmown fractal geometries;
Peano and Hilbert fractals.

The second concept for a fractal 13 a fractional
dimension. This requirement distinguishes fractals from
the Euclidean geometries, which have mteger dumnensions.
The common intuitive idea of dimension is referred to as
topological dimension. A point, a line segment, a square
and a cube have topological dimensions zero, one, two
and three, respectively. This intuitive dimension 1s always
expressed as an integer.

In (Mandelbrot, 1983; Falconer 2003), the Hausdroft-
Besicovich dimension 1s referred to as the fractional
dimension and it is defined as, a real number that precisely
measures the object’s complexity. Mandelbrot defines a
fractal as a set for which the Hausdroff-Besicovich
dimension strictly exceeds the topological dimension. He
refers to this dimension as the fractal dimension of a set.
Fractional dimension is related to self-similarity in that;
the easiest way to create a figure that has fractional
dimension is through self-similarity. The character of non-
mteger dimension causes the fractal dimension to be
useful in measurement, analysis and classification of
many fractal shapes, for example, the fractal dimension
provides a way to measure how rough fractal curves are.
In addition, the fractal dimension can describe how much
a fractal curve fills the space.

Fractal structures have found mncreasing applications
in different aspects of science and arts. They are
successfully used in the fields of physics, chemistry,
biology, architecture, etc... (El-Khamy, 2004).
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The research in the field of electrodynamics began
soon after the scientists discovered the practical aspects
of the fractal geometry. Most efforts had been devoted to
understand the physical process and mathematical
background of the interaction between electromagnetic
waves and fractal structures (Kritikos and Jaggard, 1990;
Taggard, 1995, 1977).

In passive microwave circuits design, such in the
design of the different types of filters, fractals have been
used widely and extraordinary results were obtamed. The
space-filling property of fractals had led to producing
miniaturized sizes of passive microwave circuits for
compact wireless communication systems (Jawad, 2008).

In microwave antenna design, size miniaturization of
the normal printed dipole antenna can be accomplished
either by the use of ligh dielectric constant substrates
instead of air or some foam materials with dielectric
constant nearly like that of air, by the modification of the
basic dipole shape, or by a combination of these two
techmques (Kumar, 2003). Employmg high dielectric
constant substrates is the simplest solution, but it exhibits
narrow bandwidth, hugh loss and peor efficiency due to
surface wave excitation (Kumar, 2003). Fractals are
supposed to be considered mn the second category, Le.,
antenna shape modification. In this sense, the space-
filling property of the fractal antenna offers the required
compact size, while its self-similarity makes it resonates in
more than one frequency band, due to the many
resonating substructures it consists of in the whole
structure (Kumar, 2003).

The use of fractals in microwave antenna design has
dramatically increased in the recent years, where
miniaturized and multiband antennas have to meet the
challenges imposed upon the modern communication
systems to be compact and multi-functional.

In this study, a new fractal printed GCPW-fed
monopole antenna based on tent transformation has been
presented for use in modern compact and multi-function
communication systems. The adopted feeding technique
used will facilitate its mtegration with MMIC circuits. The
proposed antenna dimensions can be scaled to meet the
requiremnents of the compact size and radiation
characteristics for the specified applications. Up to the
author's knowledge, the only published work about the
use of tent fractal geometry in the antenna design is that
of Hodlmayr (2004). In that research, a wire dipole antenma
has been designed and at the UHF band The
concentration there 1s mainly focused on practical aspects
of the design more than the analytical details. However,
the resulting antenna performance seems attractive and
encourages antenna designers to start limited but
promising research work on the application of this fractal
geometry on antenna design (JTawad, 2008).
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FRACTAL DIPOLE AND MONOPOLE ANTENNAS

Since, the application of the fractal concept on
electrodynamics, much work has been devoted to antenna
design (Puente ef al., 1998; Vinoy et al., 2001, Gianvittorio
and Samii, 2002; Konstantates et af., 2004; Zhu, 2004,
Haji-Hashemi et ai., 2006, Song et af., 2004; Azaro et al.,
2005; Tahir, 2007). The first reported small fractal antenna
is the Koch dipole (Puente ef al., 1998;. In this research,
some of the classical features such bandwidth, resonance
frequency and radiation resistance had been improved.
Later, different fractal geometries, such as Hilbert, Peano,
Minkowsk, Sierpmski etc..., have been applied to dipole
antenna design Vinoy ef al., 2001, Gianvittorio and Samii,
2002; Konstantatos ef af., 2004; Zhu, 2004; Haji-Hashemi
et al., 2006; Song et al., 2004; Azaro et al., 2005, Tahir,
2007). The reported designs offered astonishing results of
antenma performance, whether in the compact size gained
or in the multi-resonant behavior they possess. In Fig. 1
and 2, Hilbert and Peano fractal curves up to the fourth
iteration level, (n = 4) are depicted, for the sake of
comparison with the presented tent curve fractal. These
fractals have been widely used in dipole antenna design.

An interesting point of comparison in this context is
the total length of the fractal in each iteration level as a
function of the side length, L, of the area containing it.
This factor acquires its importance from the fact that it
mainly determines the lowest resonance frequency of the
multi-band fractal dipole and hence the reduction m size
gained n comparison with the classical dipole antenna or
other fractally designed dipoles.

For the Hilbert fractal curve, the total length, S,, in the
nth order generation level i1s given n (Vinoy ef al., 2001)
by:

S, = (2" +1L (1)

where, L. is the side length.
While, for the Peano fractal curve, the total length, S, 1s
given by (Zhu et al., 2004)as:

S, =3 +1L 2

where, S,, nand I, are as defined earlier.

It 18 obvious from Eq. 1 and 2 that, the total length of
the curve offered by Peano fractal 1s greater than that
offered by Hilbert fractal of the same generation order
with the same side length. This means that Peano fractal
curve presents better antenna miniaturization than Hilbert
fractal does, when 1t 15 used i the design of a fractal
dipole.
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GENERATION OF FRACTAL TENT
TRANSFORMATION

The generation process of the fractal curve based on
tent transformations is more complicated than those of
both Hilbert and Peano fractals.

The presented fractal curve is constructed by
applying geometrical transformations of a umt square with
a side length L., representing the well-known tent function,
Fig. 3a using the transformation algorithm, which 1s called
multiple reduction copy machine (MRCM) as proposed by
(Peitgen et al., 2004). This MRCM provides a good
metaphor for what is known as deterministic iterated
function systems (IFS) in mathematics. The MRCM
generates a dynamical iterated function system (IFS), Fig.
3b, (Peitgen et al., 2004). Using such an IFS, it 1s possible
to produce a generation level in which all line segments
jom up to form a single path. As it is clear from Fig. 3b, the
IFS constructs such a curve with five transformations and
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Fig. 3a: The starting tent function as the imtator
structure and (b) the iteration function system
used to generate the tent fractal curve at the
different iteration levels (Peitgen et al., 2004)
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Table 1: Summary of steps to generate a fractal tent transfommation

Width Height Ratati-on

Step stretched by stretched by Flipping (deg)

A 2/3 1/3 horizontal none

B 1/3 2/3 horizontal none

C 1/3 2/3 horizontal 90

D 2/3 1/3 none -90

E 2/3 2/3 none -90

(@
)

Fig. 4: The details of the generation steps of the tent
fractal Structures from (b) to (d)
correspond to the first three generation levels

CUIves.

the space-filling property follows from the invariance of
the initial square, the tent function, under the TFS. These
five transformations, labeled as A, B, C, D and E, which
produce any fractal level from its preceding one, are
sumnmarized m Table 1. In each transformation, more than
one operation has to be performed on the original tent
function, such stretchung, flipping and/or rotation.
Figure (4a-d) show the details of the fractal curves
generation process up to the 3rd order (n = 3).

As shown m Fig. 4a-d, the constructed curve m a
certain generation level (n) is simply a collage of the five
transformations of the previous level (n - 1). Because the
initial tent function has a suitable symmetry, one can
easily be misled when applying the TFS. The TFS uses the
unit square with the inscribed letter I as an indication of
the orientation as the initial square, Fig. 3a.

It has been found that the total length 3, of the tent
fractal curve at the nth generation, is:

S, = (%)“AHL (3)
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f(x)

05L L
Fig. 5: The tent function with side length, L and a starting
angle, 0 = 63.435°

where A, 1s a constant depending on the starting anglef,
of the imitial tent function.

However, the value of this angle is bounded by an
upper limit of 6 = 63.435°; at which all the vertices of the
triangle touches the square, as shown in Fig. 5 and a
lower limit of 8 = 0°, at which the tent function is
considered as a straight line of length equals to the side
length, I of the square containing it.

From Fig. 5, the tent function can be described as:

ax, x = 0.5L
f(x) = (4)

a(l-x), x> 0.5L
and the angle 0 1s defined as:

O=tan'a
thus:

0" =0 <63435

for which:

0<a<L

It has also been found that A | in Eq. 3, 1s varied as:

1< A, <2236

for:

0" =0 <63435

It 15 worth to note here, that for 0 = 63.435°, the tent
curve has no longer be a fractal after the 2nd generation
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Fig. 6: An enlarged copy of Fig. 4d. The 2 circles shown
indicate that, at the 3rd iteration level the resulting
structure is not a fractal anymore, since, 2 same
points in space have been visited twice

step, since at the 3rd generation step the resulting curve
is not self-avoiding . Figure & shows an enlarged copy of
Fig. 4d. The two circles indicate that the same two points
in the space have been visited twice. Nevertheless, the
fractal curve can be used at this value of 0, up to the 2nd
generation, since a maximum space-filling is gained
according to Eq. 3 and it is still self-avoiding.

Practically, if fractal curves are applied, few numbers
of iterations are enough to model an antenna
(Cohen, 2005, Gianvittorio and Rahmat-Samii, 2002; Haji-
Hashemi et al., 2006). However, to generate a tent fractal
self-avoiding curve with higher generation levels, the
starting angle must be reduced.

ANTENNA DESIGN

As a starting step, a monopole anterma based on the
1st iteration, has been modeled using a side length of
13 mm. This will result in a monopole length is of about
67.64 mm. The monopole trace width to length ratio W/S
is of about 0.05%, with a trace width of 0.9 mm. This ratio
seems practical in most printed dipole and monopole
antenna designs reported in the literature (Konstantatos
et al., 2004; Dubost, 1981). The monopole antenna is
supposed to be printed m free space and i1s fed by
grounded coplanar waveguide, GCPW. It has been found
that, with GCPW feed, an impedance matching can be
maintained over a wide frequency range. In addition,
impedance matching has not affected remarkably when
scaling the antenna up or down, with its feed. However,
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it has been verified that the GCPW feed, as the CPW feed,
to be an efficient technique to enhance the bandwidth of
patch antennas (Haji-Hashemi et al., 2006; Liang et al.,
20035). Each section of the ground plane has a dimension
of 11.25x4.2 mm, the width of the center feed strip is of
0.9 mm and the gap between the feed strip and each of the
ground plane section has a width of 0.15 mm. The overall
height of the resulting monopole, including the GCPW
feed, 1s of 22.35 mm. The monopole 15 supposed to be
printed on a material with a relative dielectric constant of
nearly one, or just built n free space. This will directly
permit frequency scaling of the modeled monopole to
make 1t resonating at any desired frequency, smce material
scaling throughout a wide frequency range is not an easy
task. Using the same side length of 13 mm, a 2nd iteration
monopole antenna has also been modeled and simulated.
The resulting monopole antenna length in this case is
about 158.26 mm. The monopole trace width to length
ratio W/S has been maintained as previously depicted. A
proper modification of the GCPW feed dimensions has to
be carried out to mamtain the required umpedance
matching.

ANTENNA PERFORMANCE EVALUATION

Many fractal monopole antenna structures based on
the Ist and 2nd iterations has been modeled and
simulated using a method of moment (MoM) based EM
simulator; TE3D from Zeland Software Tnc. Figure 7 shows
the modeled monopole antennas layout with respect to
the coordinate system. Depicted 1 Fig. 8, the return loss,
S, response of the 1st iteration monopole antenna, where
the multi-resonant behavior is very clear. There are three
different resonant frequencies, for which (S, < -10dB)
with reasonable bandwidths around each. These
frequencies are located at 4.51, 14.70 and 21.07 GHz,
respectively, throughout a swept frequency range from 1
to 30 GHz. This does not prevent the possibility of the
existence of other resonating frequencies out of this
frequency range. Electric field E, elevation pattern
directivity display of this monopole antenna, at the first
resonant frequency, is shown in Fig. 9. Tt is worth to note
here, that resonating bandwidths aclhieved in this work
are  considerably larger than those reported in
(Hodlmayr, 2004), due to the use of the GCPW feed.

Other GCPW-fed monopole antennas with different
side lengths, L has been modeled and simulated, in an
attempt to make a direct relation between the antenna
characteristics and its geometrical properties. The
simulation swept frequency range has been scaled in
proportion for convenience. An interesting result, in this
context, has beenderived to correlate the GCPW-fed
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Fig. 7. The layouts of (a) 1st iteration and (b) 2nd iteration
fractal monopoles with respect to the coordinate
system
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Fig. 8: Return loss response of a 1st iteration monopole
with side length of 13 mm

fractal monopole antenna side length, T, with its resonant
frequencies. Tt has been found that the 1st resonant
frequency f,
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m GHz, can be approximately determined as:
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f= 4.51429(GHz), E-phi, phi = 90 (deg), AG = 1.43305 dB

008y
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Fig. 9: Electric field E, elevation pattern directivity display
of a 1st iteration monopole with side length of 13
mm at the first resonant frequency

-5+
]

151
@

£ 25
‘g =351

45 T T T T T T T T 1
2 4 6 § 10 12 14 16 18
Frequency (GHz)

Fig. 10:Return loss response of a 1st iteration monopole
with side length of 23.88 mm

where, 1. is the monopole side length, in mm. Being
locating the 1st rescnant frequency, the other two
resonant frequencies, f,, and f,; can be determined, with
less precision, as:

£, ~33f (6)

and

f,~48f, (7)

As an example, to design a GCPW-fed fractal
monopole antenna, of the type presented in this research,
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Fig. 12:Electric field E, elevation pattern directivity
display of a 2nd iteration monopole with side
length of 15 mam &t the first resonant frequency

with the 1 stresonatce to be located at a frequency of 2 .45
GHsz, it folloar s, from Eo (50 thatT will ecpaal to 2328 mm.
The simulated retirn loss response of this GCPW fed
monopole antenns is shownin Fig 100 As showninthis
figure, the three resonances take place at frequencies of
243, 8 47 and 1311 GHz, respectively, which are near the
predictions of Eq. 5-7. These relaions can be helpfd in
the irdtial design stage. Howewer, a slight dimension
tuning might e recuired fior the final design

Simulation results of the return loss of the 2nd
iteratiott based monopole antentas have shown an
irteresting poirt to be discussed (Figo 110 It has been
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Fig 13:The cwrent density distitotions of (2 lst
iteration monopole arderma and (b 2nd iterati on
monopole arterma with T = 13 mm, at the first
resonance frequency

noticed that this response has approximately the same
tesonatce frecuencies as those for the lst iteration
monopole of the same side length L (Fig. 127, This well
agrees with Hédmay (2004 findings.

The orly reasonable explanation of this behavor is
that; the effective tesonating segment lengths in the tro
monopoles are phisically eguival ert at the corresponding
resonant frequencies; yielding as a consequence similar
responses. This fact can partislly be asswed when
investigating the oarrert distribtions of a 2 monopoles
with different iterations g with the same side length &
the same resonance frequency. Figure 13 shows the
current density distribitions of the presdously depicted
monopoles with a side length of 13 mm. Carefid
measurement of the lengths with the highest cwrrent
detsities of these monopoles has shown that thedr sum,
in the two cases, is neatly the same This issue can
gimmilatly be justified for the other resonances.
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However, it is expected that a considerable degree of
freedom can be provided to antenna designer through the
variation of the initial tent starting angle 0, in stead of
experiencing higher complex shaped iterations. In such a
case, for a certain side length 1., it expected to obtain
different sets of resonance frequencies corresponding to
the different values of 6.

CONCLUSION

A GCPW-fed fractal printed monopole antenna has
been presented as a new multiband antenna for use in the
multi-functions communication systems. The novel
feeding used, has proven to be an attractive technique in
maintaimng a broad impedance matching throughout a
wide frequency range, besides the bandwidth
enhancement around the resonant frequencies.

Simulation results of two GCPW-fed monopole
antennas based on the 1st and 2nd iterations fractal tent
transformations assure the multiband behavior of these
antermas. A direct relation has been made between the
anterma characteristics and its geometrical properties in
an atternpt to provide a reliable starting point in the mitial
design stage. Results showed that the modeled monopole
antennas have reasonable antenna parameters at the
different resonant frequencies. This makes the proposed
antennas promising to be used in multi-function
communication systems due to its reasonable multiband
response. Additional work has to be carried out to explore
the features might be offered by this antenna when
varying the starting angle 8 of the initial tent function. Tt
is expected to obtain a variety of multi-resonance
responses for any given side length 1., providing the
antenna designer with more degree of freedom.
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