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Abstract: The relatively new field of framelets shows promise in removing some of the limitations of wavelets.
Several applications have benefited from the use of frames, for example, denoising and signal coding. In this
study, 3-D double density transform algorithm for computing advance transforms are proposed. The propose
method reduces heavily processing time for decomposition of video sequences keeping or overcoming the
quality of reconstructed sequences In addition, it cuts heavily the memory demands. Also, the inverse
procedures of the above transform for multi-dimensional cases are verified.
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INTRODUCTION

Though standard DWT 1s a powerful tool for analysis
and processing of many real-world signals and images, it
suffers from 3 major disadvantages, Shift- sensitivity,
Poor directionality and Lack of phase mformation. These
disadvantages severely restrict its scope for certain signal
and image processing applications (Shukla, 2003).

Other extensions of standard DWT such as Wavelet
Packet Transform (WP) and Stationary Wavelet
Transform (SWT) reduce only the first disadvantage of
shift sensitivity but with the cost of very high
redundancy and involved computation. Recent research
suggests the possibility of reducing 2 or more above
mentioned disadvantages using different forms of
Wavelet Transforms (Fernandes, 2002; Spaendonck et al.,
2003, Fernandes ef al, 2000) with only limited (and
controllable) redundancy and moderate computational
complexity.

Frames, or overcomplete expansions, have a variety
of attractive features. With frames, better time-frequency
localization can be achieved than 1s possible with bases.
Some wavelet frames can be shift mvariant, while wavelet
bases cannct be. Frames provide more degrees of freedom
to carry out design. There are a number of methods of
generating practical frames (Selesmick, 2001). The
undecimated DWT (UDWT) generates a wavelet frame
from an existing wavelet basis by removing the
subsampling from an existing critically sampled filter bank
(Rioul and Duhamel, 1992). A wavelet frame can be
obtained by taking the umon of 2 (or more) bases. This
can be implemented with 2 independent filter banks

operating in parallel. Kingsbury has shown the

advantages of dual-tree DWTs (Kingsbury, 1998). A
wavelet frame can also be obtained by iterating a
suitably designed oversampled filter bank as developed
in (Chui and He, 2000), for example. This is the type of
frame to be considered in this study.

The 2D wavelet transform has been used for
compressing video (Conte ef al., 2000) as well. However,
3 dimensional (3D) compression technicques seem to offer
better results than 2 dimensional (2D) compression
techniques which operate in each frame mndependently.
Muraki introduced the 1dea of using 3D wavelet
transform to efficiently approximate 3D volumetric data
(Muraki, 1992). However, there are still some aspects of
the 3-D geometry-based coding schemes that can be
improved. First, the scene geometry nformation and the
image data must be encoded separately. This requirement
limits the flexibility of the coding scheme, since the
decoding of the 3-D geometry information must be
completed prior to the decoding of the image (texture)
data. Second, the generally used 3-D geometry
representations, such as the mesh model used in existing
3-D geometry-based multi-view coding schemes, are
suitable to represent 3-D objects of simple surface but
difficult to represent objects of complicated surface,
which are often shown in natural scenes. Third, the whole
procedure of obtaining 3-D geometry information 1s
computationally complex (Bernab et ai., 2002).

This study describes new wavelet tight frames based
on iterated oversampled FIR filter banlks, first introduced
in (Selesnick and Sendur, 2000). Selesnick and Sendur
(2000} introduce the double-density wavelet transform
(DDWT) as the tight-frame equivalent of Daubechies’
orthonormal wavelet transform; the wavelet filters are of
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minimal length and satisfy certain important polynomial
properties in an oversampled framework. Because the
DDWT, at each scale, has twice as many wavelets as the
DWT, it achieves lower shift sensitivity than the DWT.
New fast computation algorithms for computing discrete
double density wavelet transform have been described in
this study, in a simple and easy to verify procedure based
on iterated FIR filter bank that simplify computation
complexity by using simple operations like matrix
multiplication and addition.

DOUBLE DENSITY DWT

Double density DWT are very sumilar to wavelets but
have some important differences. Tn particular, whereas
wavelets have an associated scaling function  (t) and
wavelet function  (t), double density DWT have one
scaling function r (t) and 2 wavelet functions 1 (t) and
P2 ().

The scaling function @ (t) and the wavelets Y1 (t)
and P2 (t) are defined through these equations by the
low-pass (scaling) filter h, (n) and the 2 high-pass
(wavelet) filters h, (n) and h, (n). Let

d)(t):ﬁ; hy(n) ¢(2t-n),
w(O=VTZh () d2n)

i=1,2.

Any function f (t) could be written as a series
expansion in terms of the scaling function and wavelets
by (Selesnick, 2001):
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where,

o(k) = [ £(t), (t)dlt

d,(3.k) = [f(D, , (Dt
1=1,2

3)

In this expansion, the first summation gives a
function that is a low resolution or coarse approximation
of f(t) at scale | = 0. For each increasing j in the second
summation, a higher or finer resolution function is added,
which adds increasing details.

The filters h, (n) and h; (-n) should satisfy the perfect
reconstruction (PR) conditions. From basic multirate
identities, the PR conditions are the following
(Selesnick and Sendur, 2000):
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Let K, denote the number of zeros Hy (¢") has at
w=m. Fori=1, 2, let K, denote the number of zeros H, (¢™)
has at w = 0. Then the Z-transform of each h; (n) factors as
follows:

Hy(z) = Qu(2) (z +1)5 (6)
H(z) = Q(2) (z+1), (7
Hy(z) = Qu(z) (z +1)%, (8)

K, denotes the degree of polynomials representable
by integer translates of Y (t) and 1s related to the
smoothness of | (t). K, and K, denote the number of zero
moments of the wavelets filters h, (n) and h, (n), provided
K=K, and K=K, If it 1s desired for a given class of
signals that the wavelets have 2 zero moments (for
example), then the remaining degrees of freedom can be
used to achieve a higher degree of smoothness by making
K, greater than K, and K,. Although, the values K; need
not all be equal, there is still the
(Selesnick, 2001 ; Selesnick and Sendur, 2000):

constraint

Length h; > K+ min(K,, K;) (o)
So, the minimum length of h, is K+ min (K, K,). In
the orthonormal case K, =K, and K2 = « (as h, = 0), which
gives the mimmum length of h, to be 2K,, which 1s
consistent with Daubechies orthonormal filters.

THE PROPOSED METHOD

The double density DWT 1s implemented on discrete-
time signals using the over sampled analysis and
synthesis filter bank shown in Fig. (1). The analysis filter
bank consists of 3 analysis filters- one low pass filter
denoted by hy (n) and 2 distinct high pass filters denoted
h, (n) and h, (n). As the input signal X (N) travels through
the system, the analysis filter bank decomposes it into 3
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Fig. 1: Analysis and synthesis stages of a 1-D single
level double-density DWT

sub bands, each of which 1s then down-sampled by by 2.
From this process X (N/2), 3, (N/2) and X, (N/2) are
generated, which represent the low frequency (or coarse)
subband and the 2 high frequency (or detail) sub bands,
respectively.

The sampled signals are filtered by the corresponding
synthesis low pass hy* (n) and 2 high pass h* (nn) and

h,* (n) filters and then added to reconstruct the original
signal. Note that the filters in the synthesis stage, are not
necessary the same as those in the analysis stage. For an
orthogonal filter bank, h* (n) are just the time reversals of
b, (n).

Wavelet frames, having the form described above,
have twice as many wavelets than is necessary. Yet note
that the filter bank 1llustrated in Fig. 1 i1s oversampled by
3/2, not by 2. However, if the filter bank is iterated a single
time on its lowpass branch (hy), the total oversampling
rate will be 7/4. For a 3-stage filter bank, the oversampling
rate will be 15/8 When this filter bank is iterated on its
lowpass branch indefinitely, the total oversampling rate
increases toward 2, which 1s consistent with the
redundancy of the frame for L, (R).

For computing discrete double density transform
consider the following transformation matrix for length-6:

By (0) hy (1) ho(2) ho(3) ho(4) hy(5) 0 0O

0 0 hy(0) hy(0) hy(2) hy(3) hy(4) h(S)

ho(2) ho(3) ho(4) ho(5) 0 0 h, (0) h, (1)

h,(0) h, (1) hi(2) h(3) b(4) h(5) 0

0 0 h,(0) h,(1) h(2) h(3) h(4) h(5 0

wo| 00 RO RO R R e nE o "

h(2) B (3) B(4) B(5) o 0 b (0) b (1)

h, (0) h,(1) h,(2) h,(3) h,(4) h(5) 0o 0

0 0 () h() B2 h() hE bE 0 0o 0

h,(2) h,{3) h,(4) h(5) 0 0 0 0 0 h, (0) h, (1),

Here blank entries signify zeros and for length-10 become:

ho(0) hy() hy(2) he(3) hy(4) h(5) h6) h(7) hy(8 h,(®) 0 0 0

0 0 hy(0) hy(M hy(2) hy3) hy(4y hy(5) hy(6) h(7) h(®) h,(©) 0 0
ho(2) hy(3) ho(4y he(5) hy(6) hy(7) h(8) h,(9) 0 0 0 0 h, (0) b, (1)
h(0) hy @y h(2) h3) h4) hS) h(6) h(7) h& h@) 0 0 0 0

W 0 0 h(0) h{@ hZ hG) h) kG h6) b7 h@E h©) 0 0

h2) BB h@ hG) hE b hE® h© o0 0 0 0 h,(0) h,(1)
h, (03 h, () h,(2) h,(3) h,(4) h,(5) h,(6) h,(7) h,(8 h,(8) 0 0 0 0

0 0 hy(0) h,(D) hy2) h,3) h,{4) hy(5) h,(6) h,(7) h, (& h,(©) 0 0
h,(2) h,(3) h,(4) h,;(5) h,(6) h,(7) h,(8 h,(9) 0 0 0 0 h, (0) hz(l)ﬂm
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A 2-D separable transform is equivalent to 2 1-D
transforms in series. It is implemented as 1-D row
transform followed by a 1-D column transform on the data
obtained from the row transform. To compute a single-
level 2-D discrete double density transform using
nonseparable method, the next steps should be followed:

Checking input dimensions: Input matrix should be of
length N*N, where N must be even and N > = length
of analysis filters.

For an NxN matrix mput 2-D signal, X, construct a
3N/2*N  transformation matrix, W, using
transformation matrices given in Eq. (10)and (11).
Apply by multiplying the
transformation matrix by the input matrix by the
transpose of the transformation matrix.

Transformation

Y=W. X W

This multiplication of the 3 matrices result in the final
discrete double density transformed matrix.

For a 2-D double density transformation, the
algorithm 1s applied in x-direction first and then in y-
direction. Similarly, in 3-D double density transformation
the structures are defined in 3-D and the transformation
algorithm is applied in x-, y- and z-direction successively.
One cycle for an n-dimensional data set 1s defined as the
completion of the algorithm for all n directions. Let’s take
a general 3-D signal, for example any NxN>M matrix and
apply the following steps:

Checking input dimensions: Input matrix should be of
length N>N>M, where N, M are even and min (N, M)
> length of analysis filter.

Apply 2-D double density transform algorithm to
each N*N mput matrix, which result in a

[BN % ﬁ w Mj matrix.

Apply 1-D double density transform algorithm to
each of the

(SN 3Nj
SN N
2 2

elements i all M matrices in z-direction, which can be
done as follows:

For each 1, j construct the Mx1 input vector Y (i, j) =
[a;, by, ¢, di;] e where, 1,j=0, 1,2, .., 3N/2
Construct an (3M/2x M) transformation matrix; using
transformation matrices given m Eq. (10) and (11).
Apply matrix multiplication to the (3M/2xM)
constructed transformation matrix by the Mx1 input
vector.
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Repeat step 3 for all 1, j to get YY matrix
[SN 3N _3M
2N 22

2 2 2
Fast Computation Method of 3-D Inverse double
density transform:

] matrix.

s LetY be the
3N « 3N « SM double density transformed matnx.
2 2 2
o  Construct (Mx 3M/2) reconstruction matrix,

T = W', using transformation matrices given in
Eq. (10) and (11).

«  Apply 1-D inverse double density transform
algorithm to eache
ﬁ o ﬁ element in all 3m/2 matrices in z-direction.
2 2
»  Construct N x ﬁ

reconstruction matrix, T = W', using transformation
matrices given in (10) and (11).
Apply 2-D Inverse double density transform
algorithm to each

3N 3N
Y el

2 2
matrix result from step 3, which can be done by
reconstruction of the input matrix by multiplying the
reconstruction matrix by the input matrix by the

transpose of the reconstruction matrix. X=T. Y, . T".
A COMPUTER TEST

A general computer program computing a single-level
3-D double density DWT is written using Matlab V.7.0
for a general NxNxM 3-D signal. An example test 1s
applied to yosemite. As shown in Fig. 2a, the original
yosemite mmage dimensions are 256x256x8 (NxNxM).
After a single-level 2-D of double density decomposition
using a set of filter, image dimensions will be a matrix of
375x375x8 (3N/2x3N/2=M) as shown m Fig. 2b. After a
single-level 1-D of double density decomposition using
the same filter image dimensions will be a matrix of
375%375%12 (AN/2=3N/2x3M/2) as shown in Fig. 2¢. An
example test 1s applied to the decomposed yosemite image
to reconstruct the orignal yosemite image by using a
general computer program computing a single-level 3-D
double density trensform and the result 1s shown in
Fig. 2d.
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Fig ¥ Yosemite image Sequence, (a) 1'st Frame from
Original, (b) After 2D double density trans forrm (c)
After 3D double density transform (d) 1'st frame

reconstructed tnage
CONCLUSION

This study presents a 3-D double density transform
cotoputation methods that venfy the potential benefits of
framelets and gain a much improvernent in terms of low
cornputational complexity. The new proposed 3-D double
density  transforn  algorithen  reduces  heavily  the
processing time for decomposition of video sequences
keeping or owercoming the cquality of reconstructed
sequenices In addition, it cuts heawvily the memory
dermands,
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