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Abstract: The aim of the study deals with some aspects of the fimctional and hardware redundancy m fault
detection, fault isolation, decision making and system recovery to solve the problem of supplying wrong
information to severe or critic control systems, achieving a fault tolerant control system. To get such objectives,
back-propagation neural networks are used as universal functional approximation devices which are used as
residuals generators. Residuals will be evaluated by means of rule based novelty strategies in a decision-making
task. Tmplementation procedure is carried out with the facilities supplied by a FOUNDATION™ Fieldbus
compliant tool, which manage databases, neural network structures and training algorithms under an standard
object oriented environment. Experimental results on a heat exchanger pilot plant are satisfactory.
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INTRODUCTION

Products quality specifications associated to the
complexity of process operation are exponentially
increasing. In order to alleviate the operating requirements
assoclated with these demands, plant health 13 bemng
relayed upon the ultimate state of the art automation
technology. In order to achieve required performance
specifications, processes must tolerate instrumentation
faults to operate fault free or safely.

Process supervision 1s the task responsible for
correct operation by means of process monitoring tasks.
The types of faults encountered in industrial applications
are commonly classified into some of the followmg
groups:

*  Process parameter changes.

*  Disturbance parameter changes.
s Actuator malfunctions.

+  Sensor malfunctions.

The sequence of subtasks to be carried out to ensure
the right process operation is the main body of process
supervision usually referred to as the process monitoring
tasks, which include:

s Faults detection.

»  Faultidentification.

»  Fault diagnosis.

¢+  Fault removing by process intervention, process
recovery or process reconfiguration.

Process momtoring 1s based in data acquisition and
data processing procedures. Process monitoring tasks can
be classified into one or several following approaches:

»  Data-driven.
»  Analytical
»  Knowledge-based.

Data-driven: The proficiency of the data-driven, analytical
and knowledge-based approaches depends on the quality
and type of available models and on the quantity and
quality of data available.

Principal Component Analysis (PCA) 1s the most
widely used data-driven technique. PCA is an optimal
dimensionality reduction technique in terms of capturing
the variance of the data and it accounts for correlations
among variables (Jackson, 1956, 1959). The structure
abstracted by PCA can be useful in identifying either the
variables responsible for the fault and/or the variables
most affected by the fault.

Fisher Discriminant Analysis (FDA) 1s a dimension-
ality reduction technique developed and studied within
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the pattern classification community (Duda And Hart,
1973). FDA determines the portion of observation space
that 13 most effective in discriminating amongst several
data classes. Discrimimmant analysis is applied to this
portion of the observation space for fault diagnosis
Partial Least Squares (PLS) are data decomposition
methods for maximising covariance between predictor
block and predicted block for each component (Wise and
Gallagher, 1996, MacGregor, 1994; Piovoso and
Kosanovich, 1994; Piovoso and Kosanovich, 1992).

Analytical: Analytical methods that use residuals as
features are commonly referred to as analytical
redundancy methods. The residuals are the outcomes of
consistency checks between the plant observations and
its math-model. The residuals will be sufficiently large
values under presence of faults and small or negligible in
the presence of disturbances, noise and or modelling
errors (Frank, 1993; Gertler, 1998; Hodouin and Makmni,
1996). There are three main ways commonly used to
generate residuals:

*  Parameter estimation.
Observers.

Parity relations.

In the case of parameter estimation, the residuals are
the difference between the nominal model parameters and
the estimated model parameters. Deviations in the model
parameters is an indication used as the basis for detecting
and 1solating faults (Bakiotis ef al., 1979, Isserman, 1998,
1993 Mehra and Peschon, 1971).

In the observer-based methods, system output is
reconstructed from measurements or a subset of
measurements with the help of observers. The differences
between actual measured output and estimated output are
the residuals (Frank, 1990, Clark et al., 1975; Ding and
Guo, 1996).

Parity relations strategy checks the consistency of
process math-model (the mathematical equation of the
system) with real time measurements. The parity relations
are subjected to a linear dynamic transformation with the
transformed residuals used in detection and isolation
tasks (Gertler, 1998; Mironovski, 1979, 1980). Mentioned
and commented analytical approaches require error free
mathematical models in order to be effective.

Knowledge-based: Knowledge-based methods,
extensively applied on process monitoring tasks include
the following:

*  Causal analysis.
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Expert systems.
»  Pattern recognition.

This teclniques are based on qualitative models,
which can be obtained through causal modelling of the
systems, expert knowledge, a detailed model describing
the system, or fault-symptom based cases.

Causal analysis techniques are based on the causal
modelling of fault-symptom relationships. Causal analysis
techniques including signed directed graphs and the
symptom tree are priunarily used m fault diagnosis
(Lec et al, 1999, Mo et al., 1997, 1998).

Expert systems are used under a human reasoning
scheme (shallow-knowledge expert system) Domain
experts experience can be formulated in terms of
knowledge stored mto a rule base, combined with first
principles knowledge and applied successfully on fault
diagnosis (Kramer and Finch, 1988, Li, 1989). In contrast
to shallow-knowledge expert systems, deep-knowledge
expert systems are based on a model such as engimeering
fundamentals, a structural description of the system, or a
complete behavioural description of its components in
faulty and normal operation conditions (Kramer and
Palowitch, 1987; Kramer and Finch, 1988). More advanced
expert systems using machine learning techniques
(David et al., 2003), are advantageously used to shallow
and deep knowledge expert systems, m which neural
network based learning algorithms are extensively used
(Bakshi and Stephanopoulos, 1994; Gao and Ovaska,
2001; Frosini and Petrecca, 2001).

Pattern recogmition techniques
between data patterns and faults classes without an
explicit modelling of internal process states or structure
(Xu et al., 2003). Artificial neural networks and sef-
organizing maps based in the unsupervising learning
known as Kohonen self-organising map are the main tools
(Doyle et al., 1993).

An extensively used technique for process diagnosis
based in neural networks apply the back-propagation
neural network scheme (Nekovie and Sun, 1995). In this
worle, back propagation neural networks will be used as
the main tool associated to rule based decision making
strategies (Zilouchian and Bawazeer, 2001; Demuth and
Beale, 1998).

None of the mentioned methods are affective (alone
or individually used) in large scale systems supervision
without being combined between them. Usually the best
process monitoring schemes mclude the use of multiple
methods for fault detection, identification and diagnosis
(Stephen and Singh, 2003).

The aim of this work 1s focused on the description of
the controlled system recovery methodology by using

use assoclation
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fault finding, isolation and reconfiguration tasks as part of
the plant supervision, including decision making
procedures according rule based techniques. To carry out
proposed task, the implementation of massive neural
network based models using back propagation algorithm
based on collection of real-time data for a steady state
operation conditions 1s presented (Anonymous, 2001).

The main relevant topic of the contribution n this
work, is the combination of a plant recovery strategy with
the utilisation of Artificial Neural Networks (ANN)
technology for the inferential analysis of mstrumentation
performance m a wide range of industrial controlled
plants. The proposed neural networks architectures can
accurately predict various properties associated with
plant performance behaviour. The Back-Propagation
Neural Network (BPNN) 15 the most popular feedforward
predictive network deployed in process industries. The
back-propagation network assumes that all processing
elements and commections are somewhat responsible for
the difference of expected output and the actual output.
The training algorithm is a modified iterative gradient
descent algorithm designed to minimise the mean square
error (RMS) between the actual output and the desired
output, requiring a continuous differentiable non-linear
search space called conjugate gradient method.

PROBLEM BACKGROUND AND NEURAL
NETWORK BASED MODELLING

Tt is not common to operate with linear processes
because a system 1s linear if all of its elements are linear
and non-lnear if any element 1s non-linear. Due to such
reason industrial processes are usually non-linear. On the
other hand, real lumped parameter systems doesn’t exists.
Process parameters usually encountered in industrial
systems are generally distributed instead of lumped and
finally, such systems are non-stationary, which means
that its parameters are time-variant. Under this scenario
any attempt to model an industrial system by analytical
means could not succeed unless it will be assumed a
considerable modelling error. Mentioned drawbacks could
be minimised or at least slowed down by applying an
altemative modelling approach under functional
approximation. Functional approximation has been
extensively applied in many industrial applications where
it can be pointed out some recent works due to (Bawazeer,
1996; Bawazeer and Zilouchian, 1997), among other
authors. Nevertheless, 1 this work, functicnal
approximation is being applied exploiting its maximum
modelling power to describe real time applications: Here
varying time parameters of tiune variant systems are
considered as system variables from a modelization point

403

of view. Such modelling concept is carried out by means
of conveniently trained BPNN. Under such assumption a
process can be described by a set of variables classified
as command inputs, disturbances, controlled outputs,
internal process variables, variable parameters, constant
parameters and in general all variables and parameters
related by any functional dependence between them and
stored into a database under some restrictive conditions.

Causal processes can be modelled by means of
universal functional approximation devices. A modelling
property of causality 1s used n this work, to predict not
only steady state process imput-output relationships but
transient state dynamics also.

In order to reaffirm the concept of neural network
based modelling (NNBM), let us consider a causal
process being described by a functional approximation
procedure where V| is the output variable, V,, V,, ...V are
input variables including its derivatives and P,, P,, ... P;
are process parameters. Under such notation, the
following transient state inputs/output relationship may
be expressed for every sample cycle as:

P.P (1)

V, =1(V,, V-V ,PLB, - Fy)

Given a database containing causal data supplied
from the process defined by Eq. (1), followmng
relationships can be stated as output predictions
according the following expressions:

Vi =1£(V,, V,, Vi BB, P,
V, =f(V,V,, - V.. BB, Fy),
P =1f(V,.,V,.,--V_,F,.F),
P, =f(V,,V,,---V. PP}

(2

where, V, = (V,, V,, V., P, P, ...P; ) in (2) is a Direct
Model Predictor (DMP) and any other functional relation
in (2) are Inverse Model Predictors (IMP).
For the common case of constant parameters Eq. (2)
yields:
Vi= f(VZ: Vi,o- VN)’

v, :f(v1av3:"'VN)a (3)

V =1f(V. V-~V )

Neural networks will not be an accurate predictor, if
operating input/output data are outside their training data
range. Therefore, the training data set should possess
sufficient operational range including the maximum and
minimum values for both inputs/output variables.
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Every sampled data set, in order to be acquired and
stored into a database, must satisfy the condition of
fimetional dependency representing the real-time dynamic
behaviour. For the case of deficient information in
quantity or quality, there are some alternatives
(Roelof and Pedrycz, 2003), not considered in this work. ITn
order to ensure such condition a signal conditiomng task
by proper filtering 1s to be camried out. Such signal-
conditioning task requires that every variable would be
enabled to enter the database when all inputs/output
variables satisfy the condition of being acquired into the
same sample cycle. If one and only one data pomt fail
entering the database, then all data set is eliminated.

NN based functional approximation: Neural Networks
(NN) are essentially nonlinear function approximators that
utilize process inputs to predict process output. The
technical promise of neural-network technology comes
from the fact that universal approximators are created
using a multi-layer network with a single hidden layer that
can approximate any continuous function to any desired
degree of accuracy.

Soft sensors that utilize NNs must be adapted to the
special requirements of the process industry. In particular,
1t 18 necessary to compensate for the delay in the process
output for changes in upstream conditions (Mehta ef al.,
2001; Tzovla and Mehta, 2001, Ganesamoorthi et al.,
2000). Thus, a NN typically has one output (the predicted
variable) and any number of upstream measurements as
inputs with compensation of process delay. Figure 1
shows a 3-layer feedforward NN.

In this example, the NN supports n inputs, a single
layer of hidden neurons, bias nodes at the input and
hidden layers and one output. Each input 1s delayed by a
certain amount to allow the value used in the network to
be time coincident. The weight w; connects the ith node
in the previous layer to the ;® node in the next layer.
Weighted values are summed at the node before being
passed through an activation fimetion

For a sigmoidal hidden neuron, the summed node
mput 3, and the output h,, are given by as:

“4)

Typically the output layer has a linear activation
function, that 15, a summation of the inputs to the output
layer.

The structure of a NN soft sensor 1s relatively simple
and is implemented in real-time controllers with little
processor loading (Bawazeer and Zilouchian, 1997
Terrence et al., 2003). The real challenges in the design
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Delay to address
dy namics

Fig. 1: Three-layer feedforward NN

and mmplementation of tools used to create a working NN
may be summarized as: Collecting historic data on the
process mputs and the process output measurement for
screening of the potential mputs to the NN. Also, this
data is needed to determine the NN structure and value of
parameters used in the NN:

Tdentifying the delay between each input and its
mmpact on the process output predicted by the NN.
Determming which of the process mputs
significantly affects the process output through a
calculation of mput sensitivity.

Determining the weighting factors and number of
newrons included in the hidden layers for best
results.

Validation of the network.

Data acquisition: The data collection 1s by far one of the
most critical steps in the development of a NN. When
collecting data to be used to tramn the NN, it is important
that the inputs and outputs vary over their normal
operating range. If the process output 1s available only as
a lab analysis, then this data must be merged with
historical data on the mput measurements to allow further
analysis. Some simple rules that should be observed in
the data collection are:

Only if the nputs change during the time that data 1s
collected will it have an impact on the process output
and thus be 1dentified in traimng. Where possible, a
uniform number of sample values should be collected
over the operating range of that mput.

Provisions should be made to automatically exclude
values that fall outside this normal range of
operation. Statistical techniques often prove useful
in defining the outlier boundaries. A good rule of
thumb for valid data limits is Mean +/-3.5 * Standard
deviation, which mcludes approx. 99.9% of the data
in the given region.
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Also, it is important that the user be able to flag
regions of the historic data to indicate periods of
abnormal operation so tlis data, for all inputs and
outputs, will not be used m the development of the
network.

Determining input delay: A change in an upstream
measurement may not immediately be reflected m a
process output. Tdentification of this delay is the first step
in the creation of the NN. The overall objective is to
determine how much each process input needs to be
delayed to allow best alignment with the output response.
This is done automatically by calculating the cross
correlation between each upstream measurement value
selected as NN mputs and the process output value
selected as the neural-network output. The cross-
correlation, is calculated for a process input and a process
output.

The time shuft, K, between the input and the output
that produces the maximum cross-correlation coefficient
is used as the input delay that should be introduced into
the input processing of the NN.

The cross-correlation value indicates the magmtude
(and sign) of the effect of the mput on the output. For
example, for a simple first-order process, input at
delay that equals approximately (dead time + time
constant/2) has most relevance,
correlation value occurs at that delay. Once the most
significant delay is known, the input data is shifted by
that delay.

as the maximum

Estimation of input sensitivity: In the imitial definition of
the NN, it may not be possible to know which of the
upstream measurements mnfluence the process output to
be predicted by the soft sensor. Only those that have a
significant impact should be included i the network. The
sensitivity is defined as the change in dependent variable
(output) y for a unit change in independent variable
(input) x, or, mathematically:

Sy_Ay/y (3)

* Ax/x

The initial sensitivity estimate is calculated from a
sunplified linear model, prior to developing the NN model.
A liear model for computing the sensitivities may be
obtained using the standard PLS algorithm, for example.
The delayed input values and process output are used in
the development of this model. Using this model, the
mput sensitivity 1s calculated by changing the mput by
unit while all other inputs are kept constant and
determining the output change.
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In a multivariable system, a higher wvalue of
sensitivity indicates that change in that input has higher
influence on the output. The sum total of all sensitivities
is normalized to 1. Information on the sensitivity of the
inputs to the output indicates their relative importance.
The sensitivity value at the delay identified in the
previous step 18 used to exclude inputs that the output
shows little or no dependence on. One techmque 1s to
exclude mputs whose individual sensitivities are small
compared to the average sensitivity.

Achieving input weights: Having determined the mputs
and delays to be used m the NN, it is now possible to
determine the weighting factors and number of neurons
included in the hidden layers to provide the best results.
The weights in the network are initialized with random
small non-zero values. Randomness msures lack of bias,
while small values give more freedom for modifying the
weights to avoid saturation. For a given number of
neurons m the hidden node, the squared error between
the calculated soft sensor output and the actual output
measurement for one point in time 18 expressed as:

B, =, =y, (6)

The cumulative error for set of data 1s calculated as
follows:

(7)

By incrementing the weighing factor W, associated
with input 1 and node j on the value 6 JW, and observing
change in cumulative error E yields the gradient as:

or i fmal differences

Gradient defines change on the output for a unit
change of the weight Wij. The back propagation algorithm
(8) is used to calculate new weights that minimize the
cumulative error 1n the direction of negative gradient
(steepest descents) for each pass through the data set (an
epoch):

lenew _ leold o (8)
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where, ¢ defines the step size of change in the gradient
direction, more popularly known as the learning rate.
Instead of using the gradient descent method for error
back propagation, which suffers from a number of
problems, such as slow convergence and fixed learning
rate DeltaV Neural uses a modified algorithm called
conjugate gradient method. The speed of convergence 1s
umproved by modifying the back propagation algorithm to
incorporate the conjugate gradient technique. Rather than
use a fixed step size, the new direction is based on a
compenent of the previous direction. To avoid settling on
a local mimima, the traming algorithm 1s designed to
automatically turn the direction remembrance on and off
depending on whether the error is improving or not. Each
time this 1s done, it results in starting with a brand-new
direction. One complete pass through the data set is
known as an epoch.

During the training of the NN, the cumulative error
for the traimng set of data will decrease monotomically,
approaching a constant value in an asymptotic manner.
However, if the cumulative error is calculated using a
validation data set not used in training, then at some point
the error will begin lo increase. Past this pomt where the
training and validation error begin to diverge, the neural
nets start learning features specific to the training data set
rather than the general process. The goal of training,
though, 1s to learn to predict the output given real process
mputs and not just to memorize the training set. This 1s
known as generalization.

To detect over-training, a certain portion of the data
set 18 kept aside for validation during the training phase.
This 1s called the test set. At each epoch, while the
weights are modified based on the error on the training
set, the test set 13 used to detect when over fitting of the
training set has occurred. At each epoch, the error on the
test set (test error) for the new set of weights 1s calculated
and compared with the best test error. In order lo prevent
training from stopping at some random choice of weights
for which the test error turns out to be small, the algorithm
runs for at least a fixed mumber of epochs before
establishing any minima. Also, the training error is added
to the test error to define a stringent minimum total error
condition. In this way, it 18 made sure that both the data
sets have acceptable errors when the algorithm converges
and the weights at the best epoch are picked at the end of
training.

SEARCHING FOR THE NUMBER OF NODES
IN THE HIDDEN LAYER

The number of nodes in the hidden layer has a large
umpact on the accuracy of the function approximator or
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soft sensor. In general, a poor fit is achieved with a
smaller number, while a larger number may lead to over
fitting the training set. To determine the optimum number
of hidden nodes, it is possible to train the network
starting with one hidden node up to the maximum number
of nodes, which is the number of inputs to the NN. For
each increment, the mimmum cumulative error is stored. If
the difference between errors for different numbers of
hidden nodes i3 within a tolerance level, the NN with a
smaller number of hidden nodes is given preference. The
algorithm then automatically picks the weights for the
best combination of train‘test error obtained. In this
manner, the generalization of the network is maintained
while exploring for the best possible network
configuration.

Updating weights due to process changes: The property
of a process output stream predicted using a NN and
measured upstream conditions is automatically corrected
for error mtroduced by unmeasured disturbances and
measurement drift. This correction factor is calculated
based on a continuous measurement or sampled
measurement of the stream provided by an analyzer or lab
analysis of a grab sample. An adaptive correction of the
NN is created by incorporating this automatically
generated correction factor as an integral part of the
neural-network algorithm.

Two approaches are used to calculate the correction
factor that must be applied to the NN prediction. Both are
based on calculation of the prediction error using the
time-comecident difference between the uncorrected
predicted value and the corresponding measurement
value. Depending on the source of the error, a bias or a
gain change i the predicted value is appropriate. To
avoid making corrections based on noise or short-term
variations in the process, the calculated correction factor
should be limited and heavily filtered, for example, equal
to twice the response-time horizon for a change in a
process mput. During those times when a new process
output measurement is not available, the last filtered
correction factor 1s mamtamed.

An indication is provided if the correction factor is at
the limit value. Also, a configurable filter on the corrected
prediction value allows noise in the input measurements
to be filtered. The basic implementation 1s shown in
Fig. 2.

The fact of mcorporate the adaptive correction as
part of the NN, simplifies implementation and dramatically
improves neural-network online performance.

State-of-the-art implementation: The following features
are normally supported by a control systems based on NN
functional approximation or soft sensors:
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Fig. 2: (a) Adaptive NN Structure (b) NN Function block
symbol

Feedforward NN-based intelligent sensors that are
tightly integrated with scalable process control
systemn.

The applied algorithms are based on the back-
propagation techmque with significant moedifications
for use in process industries.

Statistical pre-processing techmques remove data
unrepresentative of the general region of operation.
Tools allow us to automatically realize a suitable
mput-output configuration for the data set.

For all mputs, the input 1s time shifted through the
use of cross-correlation values between the output
and input, to account for dead time in the neural-
network model.

Sensitivity analysis  determines
importance of the various inputs.
Conjugate-gradient back-propagation training with
direction remembrance and optimal learning rate
calculation, 1s used to realize a robust NN-based
identifier.

Network model predictions are validated against
actual data.

In onlne mode, the actual process variables, for
example those obtained as a result of lab analysis, are
used as mputs to the NN for automatic adaptation of
its prediction in response to changes in process.

The NN function block 1s imbedded n the process
control system to simplify implementation and
mmprove reliability.

An intuitive and user friendly GUI minimizes the
engineering and 1mplementation effort whle
maintaining the underlying NN technology.

the relative
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A 2 stage preprocessing algorithm for identification
of process input analysis.

Automatic determination of the number of hidden
nodes.

FAULT DETECTION AND ISOLATION STRATEGY

The performance of all mput/output devices of a
multivariable severe control system is of critic relevance.
For that reason redundancy is a common alternative to
fault tolerant control systems monitoring. Consequently,
proposed strategy concerns to both aspects of
redundancy combined between them as required:

Functional redundancy.
Hardware redundancy.

Functional redundancy deals with two or more
functions describing the same process (Deckert et al.,
1977), while hardware redundancy is referred to 2 or more
hardware devices applied in measuring the same variable.

Supervision task is being carried out in two phases:
fault detection and fault isolation. Depending on process
characteristics there will be necessary to propose
functional and hardware redundancy.

Fault detection is inferred by evaluating functions
achieved by functional redundancy with parity relations.

Fault isolation is inferred by logic evaluation of
hardware redundancy with parity relations on pairs of
devices, which means that fault isclation concerns to
discrimination of a faulty sensor by means of a novel
method. The main objective in applying functional
redundancy is to detect and isolate the group of devices
that fails. So that, in order to ensure the dynamic
equilibrium, action/reaction forces inherent to dynamic
processes are balanced by functional approximation
based models according NNBM.

Given a general dynamic process modelled by means
of functional approximation procedures under NNBM1,
NNBM2 NNBM3 and NNBM4 where Y, and Z, are action
and reaction functions, Y and 7 are NNBM outputs of the
action/reaction functions, Y™ and Z° are redundant NNBM
outputs of Y and Z, 1t follows that:

DMP1: Y =£(Y,,Y,...Yy)

DMP2:Y =£(Y,.Y,,. ¥,
DMP3:Z =£(Z..7,..Z,)

()
! ! ! !
DMP4: 7 =f(Z, ,Z, .7 )

where,
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Y, Y,. Yy = are inputs from measuring devices to
DMP1. Y, Y,,.Y, are inputs from
redundant measuring devices to DMP2.

2, Zos Ly = are inputs from measuring devices to
DMP3.

20,2y, Ly = are inputs from redundant hardware
devices to DMP4.

Given a dynamic process where an input or action
force Y, (manipulated variable) 1s modelled as Y = £ (Y|,
Y,,...Yy), the output or reaction force 7y 1s modelled as
Z =1t (Z, Z,..Zy), which i1s a function of process
variables, then, the condition for dynamic equilibrium
requires the assumption:

Y, =

7 (10)

In order to establish reasoning bases regarding

devices performance, following propositions are
considered:

The condition for functional redundancy between
groups of devices requires the existence of

mstrumentation groups modelled such that rigorously
Y’ =Y, Z’= Z, equations which 1n practice are relaxed to
the approach:

Yy, Z'=zZ an

The condition for the existence of hardware
redundancy requires:

12
12

/ !
Y, =Y, .Y, =Y, 2
7,27, .2, =27,

112
112

1?72

A necessary condition but not sufficient to confirm
the correct operation of instrumentation is the correctness
of the involved NNBMs, which means the absence of
modelling errors in the functional approximation devices.
Under the necessary condition consisting in the absence
of modelling errors and assuming that Y=7 and that only
wrrelevant short periods of time Y7, then it 13 admitted
that both man groups of devices operate correctly with
an exception. Furthermore, if Y'=7Z" and that only
urelevant short periods of time Y™ #Z°, then 1t 15 admitted
that both groups of redundant devices operate correctly
with an exception. Consequently, if Y=7, Y=Y’ and Z=7"
then the redundant groups of devices Y and 7 operate
correctly because Y=7" and Y'=7. The mentioned
exception concerns to the possibility of collapse of all
devices in both groups. In such a case, then Y=7=0,
Y'=7"=0.
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Proof: given Y=7, Y=Y and Z=7’ then Y =7’ which is
the balance asseveration between Y, and Z;,.

Theorem 1: Under the assumption of Y # 7, at least one
of both groups of devices of measuring system fails.

Proof: Y, = 7, that means dynamic equilibrium must be
balanced or dynamic balance camnot be violated.
Consequently, if no fault exists, Y=7. So hat, if processing
system (NNBM) do not fail, then data acquisition system
{(measuring devices of Y, Z or both) fails. Consequently
from theorem 1 follows that If Y* # 7Z° =at least one of
both groups of redundant measuring system fails.
Furthermore, if Y™ # Z7 and Y # Z = at least one of the
main groups and one of its redundant groups of
measuring devices, is faulty.

Individually faulty groups isolation is carried out by
functional redundant analysis of residuals applied on all
groups of measuring devices. In the task of faulty groups
1solation, the following theorem 1s to be proposed and
applied.

Theorem 2: Any residual R, approaching mnull value,
guarantee the correct operation of both groups of devices
involved in such residual.

Proof: Y=7 is a guarantee of correctness measuring
instrumentation groups Y and Z. So that, if Y=7 then
R=Y-7Z = 0.

As consequence of theorem 2 it can be stated that
when comparing three groups of devices G,, G, and G,,
the group of devices that fails 1s the one excluded from
the two groups that approaches null value. According last
proposition it follows that given the groups of devices Y,
Y, Zand 7’7, where Y and 7> are redundant groups of Y
and 7, respectively, yields the faulty group as:

G, <Ry ARy, ARy,

G, =Ry, ARy, AR,
G, <R, AR, AR,

(13)

where,

Ry = Are the residuals achieved by parity relations
applied by means of functional redundancy and
the symbol.

~ Is a logic and operator.

So that, applying logical evaluation of achieved
residuals by means of the rule based procedure shown by
Eq. (8), faults detection and isolation at group’s level is
being carried out. The meamng of Eq. (8) 1s illustrated by
means of Fig. 3.
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Fig. 3: Fault detection and 1solation between redundant
groups of devices

Using an alternative redundant group, individual
faulty groups iselation i1s completed under the same
reasoning base:

G, =Ry, AR, AR,
G3 <: RY'Z /\ RZ'Z /\RY'Z‘
G, =R, AR, AR,

(14)

The meaning of Eq. (14) is illustrated in the Fig. 4.
Using the simplified combmation of both mamn and its
redundant groups, yields:

G, <Ry AR, ARG,
G, = Ryyp ARyy ARy
G, <Ry, ARy, ARGy
G, =Ry, AR AR,

(15)

The meaning of such asseveration concluded by the
Eq. (15) 15 depicted by Fig. 5.

Tsolation of a faulty device: Nevertheless, fault isolation at
device level requires to add a step more which consists in
exploit the concept of hardware redundancy, where the
faulty device is isolated by the following rule-based
inferential procedure:

Y'1 ¢Gl /\RYI
Y, =G, AR+,

Y, <G, ARy,
Y/ «=G, ARy,
Y/ 4=G, AR,

(16)

r
Y, =G, ARy,
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Fig. 4: Fault detection and isolation between alternative
redundant groups of devices
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Fig. 5: Fault detection and 1solation between both, main
and 1its redundant groups

Where,
! ! !
Ry =Y =Y . Ry, =Y, —Y, Ry, =Y, Y,
7, <G, AR,
7, =G, AR,
Z =G, AR,
' (7
Z, =G, AR,
r
7, <G, AR,
Il
Z =G, AR,
Where,
! ! !
R, =24 -7, R, =2,-72, R, =72, -7,

Decision-making and reconfiguration: The decision
under a single faulty device with redundancy consists in
enable the redundant stand-by device when a fault
appear 11 a device of a main group of devices as soon as
possible in order to avoid additional disturbances due to
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instrumentation faults, avoiding the imminent shut down
of the plant. So that, in the same sample cycle where
Eq. (16) or (17) detects a fault, reconfiguration must be
carried out.

In this study, it has been shown that combining
hardware redundancy with functional redundancy,
ambiguity is avoided and the FD and FI problem is
deterministically solved under some constraints such as:

Residuals evaluation must be performed only under
steady state dynamics.

Determinism exists only under a unique fault and not
more than one at a time under normal process
operation.

IMPLEMENTATION PROCEDURE ON A HEAT
EXCHANGER CONTROL SUPERVISION TASK

Given a pilot plant consisting in a heater exchanger
process defined by means of functional approximation
devices under NNBM1, NNBM2 and both redundant
groups of devices under NNBM3 and NNBM4, as shown
in Fig. 6, by applying Eq. (9) yields:

DMPI: Y = (U, Ap, AT)
DMP2: Y’ = (U, Ap, AT
DMP3 : Z = f{qi, Ti, T)
DMP4: 7/ = f(qi’, T, T')

(18)

Where,

U, Ap, AT Inputs to DMP1.

U, Ap’, AT” = Redundant inputs to DMP2.

q, Ti, T = Inputs to DMP3.

q.Tr.T; = Redundant inputs to DMP4.
Y,.Y,Zand 7' = DMP1, DMP2, DMP3 and DMP4

outputs, respectively.

The aim of tlus study 15 to umplement the proposed
procedure applying detection, 1solation, decision making
and recovery tasks under described methodology on a
severe heater exchanger control system. The heater is
being controlled under feedback, feedforward and
cascade modes used computed variable in cascade loop
or feedbaclk inner loop. For this reason, it is crucial to keep
the data acquisition system running properly even under
faults in data acquisition system. Fault tolerance requires
the capacity to reconfigure the plant when a fault is
detected and isolated, avoiding disturbances on the
controlled variables. Recovery is a process carried out on
the controlled plant after a decision making procedure to
keep the plant rmning under required performance
standards.
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Fig. 6: Main and redundant devices allocated to the pilot
plant
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Fig. 7: Achieving residuals Fault detection and isolation
between both, main and its redundant groups

Fault detection: Fault detection at groups level requires
the application of Eq. (13), (14) and globally (15).
Consequently, applying the described procedure follows
that, using the simplified combination of both main and its
redundant groups shown mn Eq. (15), yields:

G, =R, ARy, AR,
G, =Ry ARy ARy,
G, =Ry, ARy, AR

G, =R,y AR, ARy,

(19)

The meamng of such asseveration concluded by the
Eq. (10) is depicted by Fig. 7.

Fault isolation at device level: Exploiting the concept of
hardware redundancy, a faulty device is isolated by the
rule-based inferential procedure expressed mn (16) and (17):
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U<«<G, ARy,
AP =G, ARy,
AT <G, AR,
U'<=G, AR,
AP' =G, ARy,

(20)

!
AT <G, ARy,
Where,
R, =U—U,R,, —AP—AP ,R,, = AT—AT

q-=G; ARy
Ti =G, AR,

T=G,AR,,

/ 2D
q =G, AR,

!

Ti =G, AR,
!

T <G, AR,

Where
I

R, =q—q,R,, =Ti—Ti R, =TT

Recovery task: Once a main sensor fault is 1solated,
recovery 1s the unique active task. It consists in the
addressimg of redundant multiplexed device interchanging
a redundant stand-by sensor by the actual faulty on-line
sensor in the minimum required time.

The structure of controlled pilot plant is shown in
Fig. 8, where feedback, feedforward and cascade
measuring devices are installed with redundancy.

IMPLEMENTATION TOOLS

Deltav neural tool characteristics: DeltaV Neural
provides easy-to-use tools for developing and traming
the NN model. This tool gives us a practical way to create
virtual sensors for measurements previously available
only through the use of lab analysis or online analysers.
Tt is easy to understand and use, allowing process
engineers to produce extremely accurate results even
without prior deep knowledge of NN theory. In Fig. 9 it is
shown the structure of a NN Function Block connected to
operate in an on-line training phase.

The most relevant characteristics are summarised as:

»  FHasily creates virtual sensors using NN.

NN executes right in the DeltaV controller as a
function block.

Automated pre-processing, design, traimng and
verification.
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Fig. 8: Block diagram of controlled pilot plant
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Fig. 9: Structure of a NN function block for on-line
traimng

Expert mode allows mteracion m the NN
development.

Some other relevant characteristics are:

Variability reduction: Continuous virtual measuring of
qualitative and analytical parameters allows for accepted
tighter control of many process parameters. This provides
automatic compensation for unmeasured disturbances
and process changes. DeltaV Neural enables “IF-Then”
analysis of a process change based on future prediction
of critical parameters.

Process availability: Provides a backup and crosscheck
on a measurement provided by a sampled or continuous
analyser like mass spectrometers and stack analysers.
Provides continuous measurement for all parameters
measured by multi-streaming analysers.
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Time saving with automatic network training: It
supposes an advantage the use of easy-to-understand
graphical tools for configuration and training of the
network. Drag-and-drop configuration and automatic
historical collection make the DeltaV Neural accessible to
process engineers in need a real-time qualitative analysis.

Solid and fast execution: Running the NN right in the
DeltaV controller means that under redundant controllers,
we therefore have redundant NN at no incremental cost.
It executes as fast as once every second. In addition to
performance  benefits, tlus methodology  allows
implementation without the requirement for costly host
computers interfaced to the DeltaV system
supervisory fashion.

in a

Advantages in applying this tool with regard to
conventional approaches: In practical terms offers an
entirely new approach to the implementation of virtual
sensors with NNs. Using the DeltaV Neural function block
we can identify up to 20 individual process measurements
to be correlated with lab entry or continuous analyser
data. No step testing or manual disturbance of the
process 1s necessary in order to mmplement the NN.

DeltaV Neural is implemented as a Function Block
that executes in the DeltaV controller. This allows to use
the standard tools of DeltaV Control Studio to define the
necessary input variables along with manual lab entry
data or data from a continuous analyser.

The DeltaV Continuous Historian automatically
collects data on the mputs used by the Neural Net
Function Block completely eliminating the need to
configure a process historian. Alternatively we may
umport existing historical data mto DeltaV Neural using
commonly available tools such as Microsoft Excel for data
preparation.

DeltaV Neural will automatically perform the training
needed to build the network and stop when over training
1s detected. The historical data used to train the model can
be easily viewed and any portions contamnmng abnormal
operating conditions may be excluded using easy
graphical tools.

Upon completion of the automated network training,
the semsitivities of each process mput may be viewed
graphically. Such tool is capable of eliminating any
variables shown to have little or no effect on the output.

Additionally, experts have the option to specify such
detailed parameters as outlier limits, max/min mumber of
hidden neurons and maximum training epochs.

Verification of actual and predicted values vs.
samples gives the user an easily understable picture of
how the network behaves. Venfication may be done
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Table 1: Specifications of DeltaV neural tool

Outputs 1

Inputs 20

Controller loading forl-sec. 1.55%% of filly populated
execution rate NN FB

Main and redundant|
analog inputs

L

Sample ont
Delay future
Follow

Fig. 10: Implementation layout of supervision task
described by figure 8 with DeltaV Neural tool

against original data or any other user selectable

timeframe. Table 1 shows the NN function block
characteristics.
Implementation:  Implementation of  proposed

methodology is carried out with the facilities provided by
a FOUNDATION™ Fieldbus compliant tool Delta
(Anonymous, 2001).

As have been said, DeltaV Neural application has its
roots n multi-layered feed forward newral network
algorithm which 13 trained using backward propagation
under a training conjugate gradient algorithm. Compared
to traditional neural network products, such tool permits
advanced features, such as automatic network update
based on analyser or lab entry of new sample values and
estimation of future value of the measurement based on
current upstream conditions. The accuracy of the
measurement estimate is substantially improved as a
result of these enhancements. Inherently, this tool permits
the selection of inputs identified as potentially influencing
the process dynamics. Consequently, inputs that are most
significant, are identified and used in traimng the neural
networks. An advantage m using proposed tool is that
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understanding the details of the neural network algorithm
is not necessary to successfully use the DeltaV Neural
tool (2001).

The rule-based decision making procedure 1s carried
out by means of a CALCI function block as shown in
Fig. 10, which permits the edition of rule bases by means
of the structured text language of the IEC-1131-3 standard,
i which decision-making tasks and devices scheduling
are included.

DISCUSSION

The Fig. 11 shows the heat exchanger response and
two measuring devices T and T° for the described
application. In order to check the performance of
supervision task, sensors were mampulated alternatively
in sequential order to generate, detect, isolate faults and
solve the problem of continuing supplying the proper
measured data to the control algorithm. It 15 shown that
after sensor T fails, the heater response deviates from its
setpoint. This is due to an adjustable limit value of
residual necessary to detect the fault. After fault is
detected then, the proper redundant sensor is switched
on line and heater exchanger response start a stabilization
phase. Tt is shown that if sensor fault is abrupt (case of
power shut down) then residuals are evaluated in the
same sample cycle and the change of sensor (system
recovery) 1s also instantaneous.

Besides the solved supervision task carried out on
instrument performance status by diagnosing faulty
sensors under any fault in a single device under steady
state conditions, additional relevant information can be
retrieved from closed loop controlled systems, that helps
very much in decision making procedure. It has been
shown that knowledge about faulty sensors is crucial

C I \
failure detection, rs on-ling
45H o
I, \\\
304 QBMH\A \ \'
/ 13 failure /
. J 12 on service/
2p- ms switche: T instand by
offservice L7 :
| ms switched .27 ms switched /!
on service = off service < -
1014 s off lmc/ =
ms switched —
on serviee
0 — .
0 500 1000 1500 2000 2500
ime (sec)
Fig. 11: Layout of a fragment of SCADA for

mstrumentation supervision of exchanger pilot
plant
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when such sensors are responsible for influencing control
loops as 1n present case. For this reason, decision-making
strategy on recovery task requires strongly the
implementation of additional knowledge. Such task 1s
successfully carried out by adding some specific
knowledge to the actual rulebase with the addition of only
but net limited to an If Then Rule under the achieved
status condition. So that, decision making on system
recovery task is carried out by means of the following rule
under the assumption of correct control algorithm:

TF no sensor fault detected AND steady state error >
error_limit, THEN a subtask to analyse the actuator and
process performance is to be carried out.

If process has changed then modelling error exist and
NNBMs must be updated accordingly. Once updated, the
actuator will be the umque device susceptible of fault
where recovery is only possible if the plant is equipped
with a redundant actuator.

CONCLUSION

A systematic methodology to implement the
supervision task of process instrumentation applied on
industrial processes has been developed and presented.
The approach combines functional approximation
implemented on the basis of massive back-propagation
NN, with rile based strategies, both implemented with the
facilities of an object oriented programming tool: the
DeltaV Neural. System recovery by means of a failure
analysis strategy has been carried out to make a critic
process control safely under measuring instrumentation
faults. The application of proposed strategy requires to
satisty the following constraints:

Any fault belongs to a single device for every sample
tume.

Process operation is correct.

System operates closely to steady state.

The availability of used advanced FOUNDATION™
Fieldbus based tools brings the gap between the
proposed methodology and its implementation procedure.

In order to extensively validate such methodology,
besides the results presented i this work, some tests
were carried out on sub-modules of pilot plant under
different conditions and faults, where results are
acceptable.
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