M Journal of Engineering and Applied Sciences 3 (4): 368-372, 2008
A S OLETY ISSN: 1816-949K
Online © Medwell Journals, 2008

An Exploratory Study of Software Complexity Measures of Merge Sort Algorithm

5.0, Olabiyisi and 0. A. Bello
"Department of Computer Science and Engineering,
Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
“Department of Physical Science, Faculty of Natural Science,
Ajayi Crowther University, Oyo, Nigeria

Abstract: Programmers find it difficult to gauge the code complexity of an application, which makes the concept
difficult to understand. The McCabe metric and Halstead's software science are two common code complexity
measures. The McCabe metric determines code complexity based on the number of control paths created by
the code. While this information supplies only a portion of the complex picture, it provides an easy-to-compute,
high-level measure of a program's complexity. The McCabe metric is often used for testing. Halstead bases his
approach on the mathematical relationships among the number of variables, the complexity of the code and the
type of programming language statements. In this study, the 2 software complexity measures are applied to
Merge sort algorithm. The mtention 18 to study what kind of new mformation about the algorithm the complexity
measures are able to give and to study which software complexity measures are the most useful ones in
algorithm comparison. The results explicitly show that Merge sort has the least Halstead’s Volume, Program
Difficulty and Program Effort when programmed in Assembly language and has the least cyclomatic number

when programmed mn Visual BASIC.

Key words: Merge sort algorithm, software complexity, McCabe metric, halstead’s software science

INTRODUCTION

Software quality is the degree to which software
possesses a desired combination of attributes such as
maintainability, testability, reusability, complexity,
reliability, interoperability, etc. In other words, quality of
software products can be seen as an indirect measure and
1s a weighted combination of different software attributes,
which can be directly measured. Moreover, many
practitioners believe that there 1s a direct relationship
between internal and external software product attributes.
For example, a lower software complexity (seen here as a
structural complexity) could lead to a greater software
reliability.

Complexity is a measure of the resources that must be
expended in developing, implementing and maintaining an
algorithm. Productivity 1s chiefly a management concem
while reliability 1s a quality factor directly visible to users
of software systems.

These externally visible attributes of software
processes and products are strongly mfluenced by
engineering attributes of software such as complexity.

Well-designed software exhibits a minimum of

unnecessary complexity, unmanaged complexity leads to
software difficult to use, maintain and modify. It causes
increased development costs and overrun schedules.

Algorithms are frequently assessed by the execution
time and by the accuracy or optimality of the results. For
practical use, an mmportant aspect is the implementation
complexity. An algorithm, which 1s complex to inplement,
requires skilled developers, longer implementation time
and has a higher risk of implementation errors. Moreover,
complicated algorithms tend to be highly specialized and
they do not necessarily work well when the problem
changes (Aldkanen and Nurminen, 2000).

Algorithms can be studied theoretically or empirically.
Theoretical analysis allows mathematical proofs of the
execution times of algorithms but can typically be used for
worst-case analysis only. Empirical analysis is often
necessary to study how an algorithm behaves with typical
input see (Sedgewick, 1995).

Ball and Magazine (1981) listed criteria for the
comparison of heuristic algorithm that in addition to
execution time include ease implementation, flexibility and
simplicity. Controlling and measuring complexity 1s a
challenging engineering, management and research

Corresponding Author: S.0. OQlabiyisi, Department of Computer Science and Engineering, Ladoke Akintola Umversity of
Technology, P.M.B. 4000, Ogbomoso, Nigeria

J. Eng. Applied Sci., 3 (4): 368-372, 2008

problem. Metrics have been created for measuring various
aspects of complexity such as sheer size, control flow,
data structures and mtermodule structure. Complexity
measures can be used to predict critical information about
reliability and maintainability of software system from
automatic analysis of source code.

Complexity measures also provide continuous
feedback during software project to help control the
development process. During testing and maintenance
they provide detailed information about software modules
to help pinpoint areas of potential mstability.

SOFTWARE COMPLEXITY MEASURES

Software complexity 1s one branch of software metrics
that 1s focused on direct measurement of software
attributes, as opposed to indirect software measures such
as project milestone status and reported system failures.
Current military metrics programs emphasize non-
complexity metrics that track project menagement
information about schedules, costs and defects. While
such project tracking measures are necessary to any
substantial software engineering effort, they lack
predictive power and are thus inadequate for risk
management. Complexity measures can be used to predict
critical information about reliability and maintainability of
software systems from automatic analysis of the source
code. Complexity measures also provide continuous
feedback during a software project to help control the
development process. During testing and maintenance,
they provide detailed information about software modules
to help pinpoint areas of potential mstability.

Many of the factors affecting software quality that
have been 1dentified by researchers can be seen in part as
functions of the complexity and size of the program and
the capabilities of the programmers and managers. This
will include, but is not limited to, testability, efficiency,
legibility and structuredness.

There are a number of ways to quantify complexity in
a program. The best-known metrics, which provide such
feature, are McCabe's (1976) cyclomatic number and
Halstead and Maurice (1977) volume. These metrics
have been extensively validated and compared
(Aggarwal et al., 2002; Ramil and Lehman, 2000, Bezier,
1984; Curtis, 1981; Schneidewind and Hoffman, 1979).

HALSTEAD’S COMPLEXITY MEASURES

Halstead argued that algorithms have measurable
characteristics analogous to physical laws. His model is
based on four different parameters: the number of distinct
operators (instruction types, keywords, etc.) in a program,

369

called nl; the number of distinct operands (variables and
constants), n2; the total number of occurrences of the
operators, N1 and the total number of occurrences of the
operands, N2. The sum of nl and n2 is denoted as n while
the sum of N1 and N2 is called N. From those four counts,
a number of useful measures can be obtained. The number
of bits required to specify the program 13 called the
volume V of the program and is obtained through the
equation.
V=Nlog2n

The program level, which 1s the difficulty of
understanding a program, is calculated by:

L = (2n2)/(nIN2)
and the intelligence content of a program is given by:
[=L =V

In an attempt to include the psychological aspects of
complexity in the measures, Halstead studied the
cognitive processes related to the perception and
retention of simple stimuli. As reported m (Olabiyisi, 2006)
and (Olabiyisi et al., 2007), the mean number of mental
discriminations per second in an average human being,
also called the Stroud number, 1s between 5 and 20.

Halstead and Maurice (1977) uses 18 as a reference
point for his studies. ITn his model, the number of
discriminations made in the preparation of a program,
called effort, 1s given by:

E=V/IL

All of these measures are valid under the assumption
that the program is "pure," ie., free of so-called "poor
programming practices.” Halstead defines six classes of
impurities, among them, synonymous operands,
unfactored expressions and common sub expressions.
The complete description of these and other impurities 1s
beyond the scope of this study. However, for the
programs used for this study, all recognizable impurities
were eliminated prior to obtaiming the corresponding
Halstead measures.

CYCLOMATIC COMPLEXITY MEASURES

Cyclomatic complexity 15 the most widely used
member of a class of static software metrics. Cyclomatic
complexity may be considered a broad measure of
soundness and confidence for a program. Introduced
by Thomas McCabe (1976), it measures the munber of

J. Eng. Applied Sci., 3 (4): 368-372, 2008

]
-1
r
\La
5
Upward flow —— -6
Dovwnward flow < =7
-9
10
11
Cyclomatic complexity = 7 12
Essential complexity’ = 1 13
Design complexity = 4
1 -17
1%
=20

Fig. 1: Connected graph of a simple program

linearly independent paths through a program module.
This measure provides a single ordinal number that can be
compared to the complexity of other programs. Cyclomatic
complexity is often referred to simply as program
complexity, or as McCabe's complexity. Tt is often used
i concert with other software metrics. As one of the
more widely-accepted software metrics, it 15 mtended to
be independent of language and language format
(McCabe, 1977). Cyclomatic complexity has also been
extended to encompass the design and structural
complexity of a system (McCabe et al, 1989, Olabiyisi,
2006; Olabiyisi et al., 2007).

The cyclomatic complexity of a software module 1s
calculated from a comnected graph of the module (that
shows the topology of control flow within the program):

Cyclomatic complexity (CC)=E-N+p

where,
E = The number of edges of the graph.
N = The number of nodes of the graph.
P = The number of connected components.
To actually count these elements requires

establishing a counting convention (tools to count
cyclomatic complexity contain these conventions).
The complexity nmumber 15 generally considered to
provide a stronger measure of a program's structural
complexity than is provided by counting lines of code.
Figure 1 13 a comnected graph of a simple program
with a cyclomatic complexity of seven. Nodes are the

370

numbered locations, which correspond to logic branch
points; edges are the lines between the nodes.

EXPERIMENT WITH MERGE SORT ALGORITHM

The merge sort splits the list to be sorted into two
equal halves and places them in separate arrays. Each
array 1s recursively sorted and then merged back together
to form the final sorted list. Like most recursive sorts, the
merge sort has an algorithmic complexity of O(# log n).
Elementary implementations of the merge sort make use of
three arrays-one for each half of the data set and one to
store the sorted list in. There are non-recursive versions
of the merge sort, but they don't yield any significant
performance enhancement over the recursive algorithm on
most machines.

For the experiment, we used the complexity finder
machine designed in Olabiyisi (2006) to calculate the
complexity measures. To do so, the following actions were

taken:

The studied algorithm was coded using Assembly
Language, C, Java, Pascal, Visual BASIC resulting in
five programs. for each algorithm.

The same programming style (modular programming)
was employed in the coding.

All the programs were run on the same computer.
Operands, operator, keywords and identifiers were
similarly defined for all the programs.

RESULTS AND DISCUSSION

Table 1 presents complexity measures of different
implementation languages for Merge sort algorithm.

Figure 2 plots the graph of Halstead’s volume for
different 1mplementation languages for Merge sort
algorithm.

Figure 3 gives the graph of program difficulty for
different implementation language of the algorithm. While
Figure 4 presents the graph of Program Effort for different
implementation languages for the studied algorithm.

There are interesting points to observe about these
graphs. Figure 2 shows that Merge sort has the lowest
and highest Halstead’s Volume when coded in Assembly
language and Java, respectively. By implication, the graph
shows that Merge sort is best implemented in Assembly
language followed by Visual Basic, Pascal, C and Java in
that order.

Figure 3 indicates that if Program Difficulty is to be
considered, Merge sort algorithm implemented in
Assembly Language 15 the best while Merge sort
implemented in Java 1s the worst.

J. Eng. Applied Sci., 3 (4)

Table 1: Merge sort complexity measures by different implernentation languages

:368-372, 2008

Algorithm Program Program Program Cyclomatic
S. no. narme Language vol. (v) diffculty (D) effort (E) no. V(G)
1 Merg sort Agsembly language 717 211 151287 13
2 Merg sort C 1029 1095 1126755 7
3 Merg sort Java 1046 1100 1150600 7
4 Merg sort Pascal 807 588 474516 7
5 Merg sort Visual basic 714 574 425334 4
1400000 Assembly language followed by Visual Basic, Pascal and
1200000 worst implemented in Java.
1000000 For all the implementation languages, the cyclomatic
number is the same (i.e., 7) except for Assembly language
800000+ and Visual Basic, which has a cyclomatic number of
600000 13 and 4, respectively.
400000
206000 CONCLUSION
0 T T T T 1 . . .
Assembly € Java Pascal VB This research has considered software complexity
Implimention languages measure experiment with Merge sort algorithm. We study

Fig. 2: Graph of different implementation of the merge
sort algorithm

1400900 -
1200000
1000000 4

800000 -

600000 ~

Program difficnlty {D)

400000 -

200000 ~

0 T T T T 1
Assembly C Java Pascal YB
Implimention languages

Fig. 3: Graph of program difficulty for different
umplemetation of the merge sort algorithm

1400000
31200000 -
§ 1000000 1
5 800000
a 600000 -
£ 400000 -
200000 -

0

T T T T L]
Assembly C Java Pascal VB
Implimention languages

Fig. 4: Graph of program effort for different

umnplementations of the merge sort algorithm

In Fig. 4, we discover that considering the program
effort, Merge sort algorithm 18 best implemented in

371

the Merge sort algorithm by computing the Halstead’s
volume (V), the program effort (E), the program difficulty
(D) and the cyclomatic number V(G) using different
implementation languages.

Software complexity measures might help
practitioners to choose, out of a large number of
alternatives, the algorithms that best match their needs.
Understanding the trade-off between implementation and

performance would give a firmer basis to decision-making.
REFERENCES

Alkkanen, J. and I K. Nurminen, 2000. Case-study of the
evolution of routing algorithms in a network planning
tool. I. Syst. Software, 58: 181-198.

Aggarwal, KK., Y. Singh and T K. Chhabra, 2002. An
Integrated Measure of Software Maintainability. In
Proceeding Annual Reliability and Maintainability
Symposium, TEEE.

Ball, M. and M. Magazine, 1981. The design and analysis
of heuristics. Networks, 11: 215-219.

Bezier, B., 1984. Software System Testing and Quality
Assurance, Van Nostrand Reinhold, New York.

Curtis, B., 1981. The Measurement of Software Quality
and Complexity, Software Metrics. Perlis A. et af.,
(Eds.). MIT Press, Cambridge.

Halstead and H. Maurice, 1977. Elements of Software
Science, Elsevier North-Holland, New York.

McCabe, T.J., 1976. A Complexity Measure. IEEE. Trans.
Software Eng., 2 (4): 308-320.

McCabe, I. Thomas and Charles Butler, 198%9. Design
Complexity Measurement and Testing. Commun.
ACM., 32: 1415-1425.

J. Eng. Applied Sci., 3 (4): 368-372, 2008

Olabiyisi, S.0., 2006. Universal Machine for Complexity
Measurement of Computer Programs. Ph.D Thesis

Ladoke Akintola Umversity of Technology
Ogbomoso.
Olabiyisi, S.0O, RA. Ganiyu, M.O. Ekundayo,

0.0. Okediran and 0.0. Oderinde, 2007. Using
Software Complexity Measures to Analyze
Algorithms. An Experiment with Selection Sort
Algorithm: Ghana I. Sci. C.8.1.R.-INSTI.

Ramil, I.F. and M.M. Lehman, 2000. Metrics of Software
Evolution as Effort Predictors: A Case Study. In:
Proceeding International Conference Software
Maintenance, IEEE.

Sedgewick, R., 1995, Algorithms in C++. Reading, MA:
Addison-Wesley.

Schneidewind, N.F. and HM. Hoffman 1979. An
Experiment in Software Error Data Collection and
Analysis. TEEE. Trans. Software Eng., 5 (3): 276-286.

372

