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Prediction of Geometrical Instabilities in Deep Drawing Using Artificial Neural Network
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Abstract: Geometrical mstabilities like wrinkling and necking are 2 major defects in deep drawing process.
Because of them, drawability 1s greatly reduced leading to huge lose of material and money. Friction has an
important bearing on wrinkling and necking. Hence their prediction is of utmost importance in deep drawing
process design. In past such prediction were made via trial and error approaches based on shop floor
experiences. But such approaches are crude and time consuming. To overcome these difficulties, Artificial
Neural Network (ANN) has been used in this study. Neural networks are trained based on fimte element
simulated data. Limiting strain hardening exponent for the success of deep drawing, are arrived at from FE
simulations. Tt has been shown that proposed approach is powerful and fast in predictions of geometrical

mstabilities in deep drawing process.
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INTRODUCTION

Deep drawmg 1s a class of sheet metal forming
process used for manufacturing of cups, beverage cans
etc. Major defects in deep drawing are wrinkling and
necking, which restrict the depth of drawing. Wrinkles are
the surface defects m the form of small waves and folds.
Wrinkling of the flange or the edges of the cup results
from the buckling of the sheet as a result of the higher
circumferential compressive stresses. Eighty percent of
the part failure in automotive pressing can be attributed to
wrinkling of the flange or comer region (Dieter, 1989). The
other common failure 1s the thimming near the punch
radius, which may lead to fracture. Thinning depends
upon die, punch radius and blank holder force. Prediction
and prevention of wrinkling and necking are few of the
most important steps for the deep drawing process design
(Rao, 1998). Friction plays an important role on these
defects. There existence a limiting friction beyond which
deep drawing can’t take place, as frictional force will be so
large and it would not allow the sheet to move leading to
necking and fracture. In previous days predictions of
these defects were carried out via trial and error method
supported by shop floor experiences. But such
techniques were time consuming and costly affairs due to
large number of try outs on shop floor. Application of
numerical techniques like finite element method m such
studies, have become very popular due to their being of
non-destructive nature. Moreover, they are fast, accurate
and economical. Doege ef al. (1995) predicted necking and

wrinkling in sheet metal forming using Contimmum Damage
Mechanics (CDM) approach. Ahmetoglu et af. (1997)
determined wrinkling and fracture limits and developed
blanlk holder forces control methods to eliminate defects,
improve part quality and increase the draw depth in deep
drawing of aluminum alloys. Chu and Xu (2001) analysed
the onset of flange wrinkling of a deep drawing cup
considering it as an elasto-plastic bifurcation problem.
Correia et al. (2002) predicted wrinkling in the deep-
drawing process of anisotropic metal sheets and showed
the attainment of critical wrinkling conditions were
significantly affected by the influence of amsotropy on
the stress state and sheet curvature developed m the wall
prior to Analytical
investigations of wrinkling in deep-drawn anisotropic
metal sheets, were carried out by Correia et al. (2003).
Singh and Ravi (2003) used Astificial Neural Network
(ANN) to predict the thickness along a cup wall i1 hydro-
mechamcal deep drawing. Cloth, Lee and Chun (2005)
investigated the variation of deep drawability of STS-304
using FE simulations and attributed the wrinkles found at
the comer of the blank to the unbalanced inflow of the
sheet metal between the step edges. Zhang et al. (2006)
analyzed the conditions of process defects such as flange

bifurcation. and numerical

wrinkling and ruptures. Experiments were carried out to
verify the computer simulation results. In this study,
artificial neural network 1s applied for prediction of
geometrical instabilities in deep drawing. Finite element
analyses results of 9 sets of varying strength coefficient
(K), strain hardening exponent (n) and friction coefficients
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Fig. 1: A typical biological neuron

Fig. 2: A single processing unit

are used for training of the network. For each case,
limiting strain hardening exponent for deep drawing to
take place are predicted from FE simulation in iterative
manner. The trained network is validated for 2 new sets of
parameters. It is found that ANN predictions are in close
match with the FE results.

Artificial neural network: Artificial neural network
attempts to imitate the learning activities of the brain. The
human brain is composed of approximately 10" neurons
(nerve cells) of different types. In a typical neuron, we can
find the nucleus, where the connections with other
neurons are made through a networl of fibers called
dendrites. Extending out from the nucleus is the axon,
which transmits, by means of a complex chemical process,
electric potentials to the neurons with which the axon is
connected to (Fig. 1). When the signals received by the
neuron equal or surpass their threshold, it “triggers”,
sending the axon an electric signal of constant level and
duration. In this way the message is transferred from one
neuron to the other. In an Artificial Neural Network
(ANN), the artificial neuron or the processing unit may
have several input paths corresponding to the dendrites.
The umts combime usually, by a simple summation, the
weighted values of these paths (Fig. 2). The weighted
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Fig. 4: Neural network

value 1s passed to the neuron, where it is modified by
threshold function such as sigmoid fimction (Fig. 3). The
modified value 1s directly presented to the next neuron. In
(Fig. 4) a 3-4-2 feed forward back propagation artificial
neural network 1s shown. The comnections between
various neurons are strengthened or weakened according
to the experiences obtamed during the trammng. The
algorithm for training the back propagation neural network
can be explained in the following steps:

Step 1: Select the number of hidden layers, number of
iterations, tolerance of the mean square error and initialize
the weights and bias functions.

Step 2: Present the normalized mput -output pattern sets
to the network. At each node of the network except the
nodes on input layer, calculate the weighted sum of the
inputs, add bias and apply sigmoid function

Step 3: Calculate total mean error. If error is less than
permissible limit, the training process is stopped.
Otherwise,

Step 4: Change the weights and bias values based on
generalized delta rule and repeat step 2.
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Tabk 1: Geommetrical paratheters
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5 Drie comer Tadias 215 mon
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T Blarki thickaess drom

g Sroke length B Mt

MATERIALS AND METHOD 5

Geometrical parameters: The -vatious geomoetrica
patameters ate considered in this stody are given in
Tahle 1.

The blank disgneter, using these data, may be
calowlated using following formula (Ghosh, 20017,

D= ¥(d-20* +4 d(hs) + 27 £ (- 0.75)

whete,

t = Corner radive of the punch,
h = Height of the stroke.

d = Outer diam eter of the die.
D = tlank Diam eter.

Thiz iz walid for d= 10r

Based on the abowve formula, the blank radius comes
ot to be BE S mm and the same iz considered in this
study. The ratio of punch-corner radius to die corner
radius has been kept less than 1.

Materialparameters: Alwmirmen alloy 2024 iz considered
in thiz study. The ¥ oung’s modus and Poisson’s ratio
are TE2x10'H mm ™ and 0.33, respectively. The power law
igusged for material modeling inthe post el dingrange.

c=K &

Here o represents the effective stress, & the strain, K
strength coefficient and nis strain harderding exponernt.
For most metalsn lies between0.10 and0.50.

The warious coefficients of the power law considered
inthis shady are,

Atrain hardering coefficient (1)
Strain hardening exponent (1)

630, 690, T25 MFa
0.1,001502,0250.35,
035 04,045 and0.5

Finite element analysis: Axi-symmetric modeling of the
punch, die and blank for the deep drawing process
sittulati on have been carried ot Tools are modeled as
rigid body whereas blank is considered as deformable
which is discretized irto finite element. Four nodded
cjuadtilateral elem ents are usedfor FE modeling There are
20 elements and 20 nodes inthe FE mode (Fig 5. With
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Fig 5:Iritial mesh diagram
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Fig 6:Expanded view of the die, punch and blank

deformation the finite element mesh deforms, temeshing
ig badly needed for smooth nawdng of FE analyaiz The
curretit hesh paratneters are automoatically transferred on
the newly generated FE mesh. In this study, advanced
front quadeilateral meshing techtd epie has beet erplotye d
for remeshing. Cowlomb’ sfricion iz adopted inthis shady.
Three walues of the frichon coefficients wz. 0.1, 0.15
and 0.2 are considered Punch welocityis considered as
1 mm sec™' and punch stroke is 60 mm. The de is kept
fixed, transfer of forces am ongthem is accounted through
cottact algorithun when the punch draws the blarnk into
the die. The 3 dimensional expanded model is shown in
Fig. &.

Prediciion of limiting hardening exponent: There exista
limititng strain har dering ex ponent cotresponding to each
frictiona condition Below this value, draw abiltsy will be
less than that is needed to overcome frictional forces. To
calcudate limiting harderning exponent for given friction
cotidition, f walue is increased in the incremert of 0.05
utitil deep drawingis successful. Initial n iz taken as0.1.
Henee, for each I and fvalies, thete iz a urdgque n. These
datais tabulated in Table 2. Using these 9 sets of data, a
backyt opagati on newral nebwr otk is traned to predict the
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Table 2: Input and output parameters

Input parameters Output parameters
Sheet thickness Sheet thickness
S.No. K n f (mm) Section 1 (mm) Section 3
1 650 0.10 0.10 2.4 1.39
2 0.25 015 2.40 1.38
3 0.50 0.20 2.36 0.96
4 690 0.10 0.10 2.42 1.43
5 0.30 015 2.40 1.36
6 0.50 0.20 2.40 1.28
7 725 0.10 0.10 2.4 1.26
8 0.35 015 2.37 1.46
9 0.50 0.20 2.36 0.98
Material geometry and friction parameters
3
Change hardening
expenent
Change material
parameters
T All metetial set
No covered
Change ANN Record thicknesses and hardening
parameters exponent and training of ANN
Simulated results |—| Testing of ANN <—|ANN—resu1ts|
Both are in
No close match?
Yes
ANN parameters are
set for real application

Fig. 7: Flow chart for instability prediction

friction and sheet thicknesses. Based on these results
selection of lubricants can be made to reduce the friction.

Application of artificial neural network: Nine sets of
data, obtained from above mentioned FE analyses, were
used for training the network. A 2-6-3 size of
backpropagation neural network has been used for the
modeling. Input parameters are K and n whereas output
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parameters are friction and sheet thicknesses at sections
1 and 3. The error limit is 0.03 and it took 573463 epoches
to converge to this limit. Trained network is tested for two
unknown patterns to validate the approach. The flowchart
of the whole prediction process 1s given in Fig. 7. The
training and testing patterns are given in Table 1 and 2. Tt
can be observed that predicted results are quite close to
the sumulated ones.



Table 3: Testing parameters
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Output
Sheet thickness Sheet thickness
Input (mm) section 1 (mum) section 3
e e Friction e e BT e
S.No K n coefficient ()  ANN FEM Error (%0) ANN FEM Error (%)
1 670 0.18 0.13 2.40 2.40 0.00 1.39 1.38 072
2 710 0.34 0.15 2.38 2.39 0.42 1.45 1.39 4.32
Section 1 2.4300- .
i ~ n vs section 1
Section 2 = 2.4200
. g 2,4100-
Section 3 5 2 4000
2 23900
£ 2.3800-
g 2.37004
22,3600+
2.3500 T T T T T T
0 0.1 02 03 0.4 05 0.6
n
Fig. 9: Graph between strain hardening exponents (n) Vs
sheet thickness at section 1
Section 4 = 2.0000 n vg section 1
. . . § 1.5000
Fig. 8: Sectional view of deformed blank P_‘%
% 10000
—— k=650
RESULTS AND DISCUSSION < 0.5000 - k=690
—— k=725
. . . . . O'DDDP T T ) T T T 1
The Fimite Element Simulations for the deep drawing 0 0.1 0.2 0.3 0.4 0.5 0.6

processes were carried out using Msc.SuperForm 2005
software. Results in terms of friction and thickness
distributions were collected and given in the Table. 2. A
deep drawn blank is shown Fig. &. Tt can be observed that
section | experiences thickening due to large compressive
strains, whereas section 3 experiences thinming due to
tensile strain. These are the two locations where wrinkling
and necking take place. The plot of thickness distribution
at section 1 with different n and k values are shown in
Fig. 9. Thickemng 1s maximum at lowest n and minimum at
the highest n values. It clearly indicates the need of the
blank holder to avoid possible wrinkling. At section 3
(Fig. 10), it is observed that the sheet is under various
stresses as the corner punch radius has drastic influence
on thinning of this section. Lower K and higher n values
result in the minimum thinning. Thickness distribution in
the sheet and required friction for drawing to happen as
predicted by neural network is given in Table 3. Tt can be
observed that maximum error at section 1 15 0.42% which
15 quite small. Maximum error in thickness prediction at
section 3 1s 4.32%. It 1s also observed, at constant friction,
requirement of hardeming exponent would go up with
mcrease in K values. Friction predictions are also quite
umportant. If friction 13 more than of the hmiting value,
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n

Fig. 10: Graph between strain hardening exponents (n) Vs
sheet thickness at section 3

drawing can’t take place. In case of high friction, suitable
lubricant may be employed. In this way application of
neural network helps in material and process design for
deep drawing.

CONCLUSION

In this study effect of material and processing
parameters on the deep drawability is studied. Numerical
experimentations were carried out using FEM to generate
the database to be wsed for the training of the neural
network. Safe strain hardening exponent limit is arrived at
through FE simulations. Using these data, a back
propagation neural network was trained. The trained
network 1s validated for two unknown patterns and results
are compared with FEM counterparts. It 1s observed both
are i good match. Hence, neural network can be a
powerful tool for material and process design for
industrial applications.
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