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Abstract: Recently, context-aware or location-aware computing has become an interesting research field and
has many practical applications in commerce, tourism, public safety, entertamment, military enviromments,
hospital management, etc. Many different approaches have been proposed to tackle the problem of determining
the location of a user or a mobile device. In an outdoor environment, the Global Positioning System (GPS) is
the most popular solution. However, due to the poor indoor coverage, the GPS cannot provide a satisfactory
solution to the problem of indoor location estimation. Many different approaches have been proposed to tackle
the indoor location estimation problem. In this study, by use of the Received Signal Strength Indication (RSSI)
measurements, a simple approaches to indoor location estimation are introduced to provide a simple but
effective solution to the indoor localization problem based on existing wireless LAN infrastructures. The
approach 1s based on regression models. The performance of the proposed approaches 15 demonstrated by
testing 2 data sets acquired from real-world environments.
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INTRODUCTION

Recently, the growth of interest in location-based
applications provides a strong motivation to develop
location estimation techmiques (Brunato and Battiti,
2004, Gwon et al., 2004, Hashemi, 1993; L1 et al., 2000,
Mauve et al., 2001; Niculescu, 2004; Omr and Abowd,
2000, Pahlavan ez al., 2000, Patwari ef al., 2005). Accurate
knowledge about the position has many
applications m civil, public safety, commercial, military,
entertainment applications, etc. For

user’s

example, an
emergency caller’s location can be identified and then an
emergency assistance can be provided on time. The
location-based service can help the staff in hospitals or
nursing rooms track the sick or the elderly who are away
from wvisual supervision (Orr and Abowd, 2000). In a
museum, location estimation techmques can help a tourist
effectively through the museum.

While, the Global Position System (GPS) is the most
reliable and widespread positioning system for outdoor
location-based services, 1t 1s not a good choice for an
mndoor environment due to its poor mdoor coverage.
Therefore, many approaches to indoor location estimation

rely on dedicated sensor networks and/or existing
wireless Local Area Network (LAN) infrastructures. The
advantage of the methods using dedicated sensor
networks is that physical specification and quality of the
location sensing results 1s under control of the designer
(Orr and Abowd, 2000). However, the methods based on
existing wireless mfrastructures are more attractive and
cost-effective than the ones using dedicated sensor
networks because the former ones can be easily
integrated into existing wireless environments without
significant changes in both mobile platforms and network
infrastructures (Li et al., 2004). Basically, the intensities of
radio signals emitted from wireless networks can be used
to detect the position of a device because of a functional
dependence between the signal strength from an access
point and the physical position of the device. However,
the propagation patterns of radio signals are extremely
complex and difficult to be mathematically modeled
(Brunato and Battiti, 2004).

Some popular signal metrics related to the estimation
of distance are the Received Signal Strength (RSS), carrier
signal phase of armival (POA) and time of arrival (TOA) of
the received signal. While, we need major hardware
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modifications and dedicated drivers to acquire the
measurements of POA and TOA, it will be relatively
inexpensive and simple for us to get the Received Signal
Strength Indication (RSST) value via common wireless
adapters. Due to the factors of cost, dedicated driver and
maintenance complexity, this study focuses on the
development of 2 simple indoor location estimation
methods based on the use of the RSSI values. The first
approach is based on radial-basis-function (RBF)
networks and the second one is based on regression
models.

The proposed indoor location estimation method: The
goal of an indoor location algorithm is to determine the
location of a mobile device from some signal matrices
measured from a set of access pomts. Some partial
reviews on localization algorithms can be found in
(Niculescu, 2004; Savvides et al., 2004, Sun et al., 2003).
Each proposed algorithm has its own considerations,
advantages and limitations. In this study, a simple but
effective methods are proposed to provide a solution to
the indoor localization problem based on raw RSSI
IMeasureInents.

The RSS value 1s indicated as the voltage measured
by areceiver’s received strength indicator (RSST) circuit.
RSS is often equivalently reported as measured power. In
free space, signal power decays proportional to d7,
where d is the distance between the transmitter and the
receiver. In real-world channels, the ensemble mean
received power decays proportional to d™, where the
path-loss exponent, 1, is typically between 2 and four due
to the 2 major sources of environment dependence m the
measured RSS, multi-path signals and shadowing (Patwari
et al., 2005). Tt is a very demanding but extremely difficult
challenge to derive a functional relationship between the
position of a mobile device and raw RSSI measurements
because of the complexity of indoor radio propagation,
severe multi-path problem and variety of obstructions
(e.g., furniture, walls, building, etc). Based on a wide
variety of measurement results and analytical evidence,
(Hashemi, 1993; Patwari et al., 2005; Roos et al., 2002), the
difference between a measured received power and its
ensemble average is modeled as log-normal (1.e., Gaussian
if expresses i decibels). A critical problem associated
with this statistical-based approach 1s that the parameters
are somehow related to the environment and there are no
universally good values for them (Roos et al, 2002);
therefore, a large number of observations are required to
have a precise estimate for the corresponding parameters.

In this study, we propose an alternative but simple
approach to building a functional relationship between
the position of a mobile device and raw RSSI
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measurements. The proposed regression-model-based
method involves the following steps.

Step 1: Collect a set of observations. Each observation
consists of a par (§i,Eil 1=1,..., N, where N 1is the
number of observations,

)T E ER[]

8; = (8i1.7"- 84

and

b, = (Pu-Pip ) € R

The parameter n 1s the number of access points (APs)
placed m an indoor environment. The vector, 5, 1s ann-
dimensional vector containing the n raw RSSI signal
strength values and the vector, P , is a 2-dimensional
vector containing the physical coordinates of the mobile
device. For the jth AP, the N pairs, ( 8i>P, ), can be
transformed mto N pairs, (s, d;), where s; is the signal
strength value emitted from the jth access point and d; is
the distance from the coordinates of the mobile device,
P, to the jth AP.

Step 2: For each AP, build a second-order regression
model with three regression coefficients,

deo~_d  d d_2
Rj (sj)fcjo +CjiSj T ST

from the N pairs, (s;, d;), 1 =1, .., N, where s, represents
the signal strength value emitted from the jth access
point. In addition to the regression model, D', we build a
2nd-order regression model,

sd
jo
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for the standard deviation curve computed from the N
pairs, (s, d;). The standard deviation curve is computed
as follows. We dichotomize the strength interval into
several sub-intervals and then compute the standard
deviation of the samples in each sub-interval. An example
is shown in Fig. 1, where the strength interval is divided
into 6 sub-intervals in this case. The curve in green color
corresponds to the regression model RY, and the curve in
pink color corresponds to the regression model R™.
Therefore, we need to store 6 parameters for each AP.

Step 3: Discretize the environment inte squares of
fixed size, say L » M squares. Compute the distance
between the center point of each square and each
AP. LetR"; denote the distance between the center
pomt of the ith square and the jth AP. The vector
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Fig. 1. The regression models built for each AP from the
N pajIS’ (S]p d]l)

represents the present measured signal strength values.
According to the regression model, the mobile device 1s
probably with the distance,

d sd
Ri(s; )R (s,

far away from the jth AP. We choose the winning square
i* that minimizes the following distance measure to
provide an estimate about which square the device is
located at:

0 (dP —R{(s;)
)

3)

The main idea of Eq. (3) 13 as follows. Basically, the
smaller the FEuclidean distance between the vectors

p T
“’din

cp
CHi

(
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is, the more probable the device is at the ith square.
However, the smaller the standard deviation, Rde (s)), the
more important the distance difference,

CHESHED)

Therefore, we use the inverse of the standard deviation as
the weighting factor of the comresponding distance
difference. Basically, the larger the number of squares the
more precise the location estimate. However, simulations
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showed that the precision saturated when the number of
squares reached a certain value. In addition, larger number
of squares requires higher computational cost. To make a
tradeoff between the degree of precision and the
computational cost we adopt a 2-pass winning selection
scheme. In the first pass, we select a candidate square
from a smaller number of squares by Eq. (1). In the
following, a truly winning square 1s selected from a small
region surrounded the candidate square in the second
selection pass.

RESULTS AND DISCUSSION

Two data sets were used to test the proposed
methods. The first data set, Location Fingerprinting
Measurements, was downloaded from the Web site: http:
/fardent.unitn it/software/data/. The data set consists of
257 measurements throughout a target environment with
a size of roughly 30x25 m as shown m Fig. Za. In tlus
environment, a wireless LAN using IEEER02.11b standard
is composed of 6 AVAYA WP-TTE APs. This data set was
chosen because the authors in (Brunato and Battiti, 2004)
had used four different machine learning methods, such
as support vector machine, weighted k Nearest Neighbors
(kNN) method, Bayesian approach and multi-layer
perceptron, to test the data set and the data set was freely
available on the Internet for comparisons.

The second data set was collected at a corridor
shown in Fig. 2(b) which was about 19.2 x 30.9m. With 1.8
separation between adjacent points, total 66
measurement locations along the corridor were measured.
At each measurement location, 50 complete measurements
were taken by a person with an TPAQ HP6300 palmtop
computer in hand and oriented towards to different
directions. The average of the 50 measurements was
computed and used as the representative measurement of
that measurement location. There were 5 APs (2 D-Link
DWL-G700AP, 1 D-Link DWL-7100AP, 1 Buffalo WHR-
(G543 and 1 ASUS Spacelink AP) were located at the
corridor.

Each data set was split into a training data set and a
testing data set as shown in Table 1. For comparisons,
these data sets were tested against the k Nearest
Neighbors (kNN) method with k = 3, the RBF networks
and the regression-model-based method with the 2-pass
selection scheme. The comparisons were conducted
based on the distance error m meters, the number of
parameters required for each method and the processing
time in mini-seconds. The performance achieved by the
three methods was tabulated in Table 2. While the
computational cost of the kNN method was proportional
to the number of traming data, the computational cost of

m
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Fig. 2. The testing environments. (a) The environment at the University of Trento (Brunato and Battiti, 2004). (b) The

corridor at National central University

Table1: The data sets used for testing the indoor location estimation

methods
#oftraining  # of testing Environment
Data set data data # of APs size
1st 100 157 [ 30 x25m
2nd 50 16 5 19.2 x30.9m
Table 2: The performance achieved by the three methods
Theregression
Data set kNN RBF network model
1 Distance Err. (m) 3621 4.254 4.249
# of parameters 800 141 36 (6 Aps)
(15 hidden nodes)
Processing time (ms) 37157 2000157 16/157
2 Distance Err. (m) 3.56 3.74 4.13
# of parameters 350 T4 30 (5 Aps)
(9 hidden nodes)
Processing time (ms)  1.0/16 31716 1.0/16

the proposed method and the RBF-based method were
not dependent on the number of training data. From
Table 2, we found that the kKINN method achieved the
lowest distance error and the regression-model-based
method required the least amount of parameters. In
addition, the proposed method was faster than the other
2 methods. The price paid by the kNN method for
achieving the lowest distance error is the storage of the
large amount of the traming data. For example, the KINN
method had to store 8 parameters for each traming data
consisted of & raw RSSI signal strength values and a 2-
dimensional physical coordinates for the first data set. As
for the RBF-based method, it took the largest amount of
processing time.

CONCLUSION

Accurate knowledge about the user’s position has
many applications. A regression-model-based indoor
location estimation method was introduced in this study.
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Simulation results showed that the regression-model-
based method requires the least amount of parameters and
processing time. If the distance error is not the major
consideration then the proposed method can be
considered as a good method to be implemented at mobile
devices with a small amount of computational resource
and memory.
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