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Abstract: Homogeneous dusty fluid turbulent flow in a rotating system has been considered using 3 and 4

point correlation equations the set of equations 1s made determinate by neglecting the quintuple correlations

i comparison to the 3rd and 4th order correlation terms. Here the correlation equations are converted to
spectral form by taking Fourier transforms. Finally, integrating the energy spectrum over all wave numbers, the

energy decay law of homogeneous dusty fluid turbulent flow in a rotating system before reaching at the steady

state obtained.

Key words: Deissler’s method, correlation, dusty fluid, turbulent flow, energy decay law

INTRODUCTION

The motion of dusty fluid occurs in the movement
of dust-laden air, m problems of flndization, in the use
of dust in a gas cooling system and in the sedimentation
problem of tidal rivers. When the motion 1s referred
to axes, which rotate steadily with the bulk of the fluid,
the coriolis force and centrifugal force must be supposed
to act on the fluid. The coriolis force due to rotation plays
an important role in a rotating system of turbulent
flow while the centrifugal force with the potential is
incorporated into the pressure. Deissler (1958, 1960)
generalized a theory “Decay of homogeneous turbulence
for times before the final period. Saffman (1962)
derived an equation that described the motion of a fluid
contaiming small dust particles. Dixit and Upadhyay
(1989), Kishore and Dixit (1979) and Kishore and Singh
(1984) discussed the effect of Coriolis
acceleration covariance in ordinary and MHD turbulent
flows. Shimomura and Y oshizawa (1986) and Shimomura
(1986, 1989) also discussed the statistical analysis of
turbulent viscosity, tubulent scalar flux and turbulent

force on

shear flows, respectively in a rotating system by
two-scale Direct-interaction approach. Kishore and
Upadhyay (2000} studied the decay of MHD turbulence
in a rotating system. Sarker and Tslam (2001 ) also studied
the decay of dusty fluid turbulence before the final period
I a rotating system using 2 and 3 point correlation
equations. By analyzing the above theories we have
studied the among decay law of dusty fluud turbulent
flow in a rotating system using 3 and 4 point correlation

equations.
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CORRELATION AND SPECTRAL EQUATIONS
Equations of motion of dusty fluid twbulence

in a rotating system at the peints p, p/, p" and p”
are;
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In order to convert Eq. 5 to spectral form, using nine-dimensional Fourier transforms (Sultana and Sarker, 2004,
Sultana et al., 2006) we obtain,

Substituting the preceding relations into Eq. 5, we get
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To obtain a relation between the terms on the right side of Eq. 6 derived from the quadruple correlation terms,
pressure terms, rotational terms and the dust particle terms in Eq. 5, take the divergence of the equation of motion and
combine with the continuity equation to give
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Multiplying Eq. 7 by u), u’, u”, taking ensemble average and writing the resulting equation in terms of the

independent variables r and T, gives
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The Fourier transform of Eq. 8 is
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Equation 6 and 9 are the spectral equations corresponding to the 4 point correlation equations. The spectral
equations corresponding to the three point correlation equations are:
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Where:
RBAB, =3B! )- {13/ 008K ) - (78 k-K B K) - (7.8 ¢-k-KDB 60}, (say)
R is an arbitrary constant and
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Here the spectral tensors are defined by
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A relation between By, and y;, can be obtained by letting r = 0 in Eq. 12 and comparing the result with Eq. 13,
B (k)= [ v, (oK KDk (15)

The spectral equation corresponding to the 2 point correlation equation in presence of dusty fluid in a rotating
system is

d 2
aq)i,l F(2vk" - Qf + 2, Q + 26, Q2 0 (16)
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where, ¢,; and ¢y are defined by

(00} = [ 4,00 0591y )k a7
and - N

(0,010} = [ 4, (9 expli - Jdk ag)
The relation between ¢,; and By, obtained by letting ' = 0 in Eq. 13 and comparing the result with Eq. 18 is
by (k) = j Pije (@,lff)dlff (19)

SOLUTION

Equation 9 shows that if the terms corresponding to the quintuple correlations are neglected, then the pressure
force terms also must be neglected. Thus neglecting first and second terms on the right side of Eq. 6, the equation
can be integrated between t, and t to give

T = Vs exp] -2 vk kL + kKD K kKD 4k )5 2(8, 0, + 8, + 84y B ) —sE} (E-1,)]

(20)
Where:
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is an arbitrary constant and (v,y) is the value of vy, at t =t,. The quantity (y,) can be considered alsc as the value of
¥.u at small values of k, k' and k”, at least for times when the quintuple correlations are neglected.

Equation 15 and 20 can be converted to scalar form by contracting the indices i and j, as well as k and 1. Substitution
of Eq. 11, 15 and 20 into the three point scalar Eq. 10 results in
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Where:

o= [2v(t- tl)]15

In order to sunplify the calculations, we shall assume that [a], = O ; that 15, we assume that a function
sufficiently general to represent the initial conditions can be obtained by considering only the terms involving
[b]; and [¢],

The substitution of Eq. 19 and 22 in Eq. 16 and setting E = 1 tk’d; results in
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The quantity E is the energy spectrum function, which represents contributions from various wave numbers or eddy
sizes to the total energy. W is the energy transfer function, wlich 1s responsible for the transfer of energy between wave
numbers.

In order to find the solution completely and following Deissler (1960), we assume that

(2m)' 1] By (e K )1, B kKD | =B, (6% k%K) (25)

For the bracketed quantities in Eq. 24, we let

7 7
4m? ~ 4m? .

i b K )=k -k = ek k) —e(-k k) | = -2, —kK") 20
1 y 1

where the bracketed quantities are set equal in order to make the mtegrands in Eq. 24 antisymmetric with respect to
kand k'
By substituting Eq. 27 and 26 in Eq. 24 remembering that

dk’ = —27mk"*d(cos )dk’
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k k&' = kk' cosB, (B is the angle between vectorsk k andlgf ) and carrying out the integration with respect to

0, we get
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Where:

1
o=[2v(t—t)]
The integrand in this equation represents the contribution to the energy transfer at a wave number k, from a wave

number k’. The integral is the total contribution to W at k, from all wave numbers. Carrying out the indicated integration
with respect to K'in Eq. 27, results in

W= W, + Wy (28).
Where:
1
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Where:

1 1 1 1
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The quantity W; i1s the contribution to the energy transfer arising from consideration of the 3 point
correlation equation;, W, arises from consideration of the 4 point equation. Integration of Eq. 28 over all wave numbers

shows

]Ede =0
D

that indicating the expression for W satisfies the conditions of continuity and homogeneity.
In order to obtain the energy spectrum function E, we integrate Eq. 23 with respect to tume. This integration

results in
E=E +E,+E, €1y
Where:
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The quantity E; 1s the energy spectrum function for the final period, where, E; and E, are the contributions to the
energy spectrum arising from consideration of the three and four point correlation equations, respectively.
Equation 31 can be integrated over all wave numbers to give the total turbulent energy
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Where:
ERE R o 13 u o2
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5 sy B3

and C,, C,, C, are arbitrary constants.
RESULTS

In Eq. 44 we obtain the among decay law of dusty fluid turbulent flow in a rotating system before reaching at the
steady state. The Eq. 36 shows that turbulent energy decays more rapidly in an exponential manner than the energy
decay for non-rotating clean fluid. Thus the terms associated with the higher order correlations die out faster than those
associated with the lower order ones.

If the system is non-rotating, we put ’s = O, the Eq. 37 becomes

15

(0} = AT 2 exp{QP(t—t, i+ BT exp{RE(L—t,)}+ c[:? J T expiSEi—1,)} (38)

Agam 1f the thud 1s clean, we put £ = 0, then Eq. 38 becomes

3 t—t )2z -2
(W)=CT2+C,T7+C, L T
t—t,
which is obtained earlier by Deissler (1960).
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