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Finite Element Formulation of a Beam with Piezoelectric Patch

'A. Mahieddine and *M. Ouali
'Department of the Sciences Exactes, Technologie and Informatique,
Centre Universitaire de Khemis Miliana, Ain Defla, Algerie

*Department of the Mécanique, Faculty of the Sciences Pour I’Ingénieur,
University Saad Dahleb, Blida

Abstract: A finite element model is used to analyze beams with piezoelectric sensors and actuators. The
formulation is based on first order Kirchoff theory and accounts for lateral strains. Various parametric studies
are conducted to demonstrate the effectiveness of piezoelectrics in actively controlling the vibration of beams.
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INTRODUCTION

To satisfy the increasing demands for obtaining a
high structural performances, the conception and the
control of the light composite structures attracted a large
number of researches these last years. The active control
can elimmate the wnwanted forces by mechamsms as
sensors, actuators and feedback controllers. The
piezoelectric materials which deform when an electric field
15 applied and conversely, generate a load mn answer to a
mechanical deformation can be used as actuators and
sensors respectively. In the present study, the control of
the vibrations of beams with integrated piezoelectrics
sensors and actuators 1s studied.

The aspect of wvibrations control of plates by
piezoelectric materials was studied by Yang and Huang
(1997) and Piéfort et al. (1998). These models are based on
the classic theory of laminated plates which neglects the
effects of the transverse shear. Finite element model to
predict the vibrations of the piezoelectric actuators are
presented by Taleghani and Campbell (1999).

The aim of the present study, 13 to develop a model of
finite elements for beams analysis with piezoelectric
sensors and actuators based on first order Kirchoff
theory. The present model takes into account the lateral
strams which are often neglected in the conventional
models of beams. Numerical results are presented to study
the efficiency of piezoelectric sensors and actuators in the
active control of beam’s vibrations.

MATERIALS AND METHODS

Constitutive equations are developed for beams
with integrated sensors and actuators. The formulation

accounts for lateral strains and shear deformations. A
beam with length (L), width (b) and thickness (h) is
considered. The electric field is applied through the
thickness of the piezoelectric material.

Piezoelectric constitutive equations, with neglected
thermal effects, can be expressed as (Crawley and
Anderson, 1990, Law et al., 1996, Rao and Sunar, 1994,
Wang et al., 1994):

{DL, =[el,, {el, + [e].. {E],

(1
lo}, =[Q] {e}, ~[e], {EL,
where:
{e} = The strain
{6} = The stress
{D} = Electric displacement.
{E} = Electric field
[Q] = Elastic stiffness matrix
[e] = Piezoelectric stress coefficient matrix

[E] = Permittivity constant matrices

Piezoelectric materials possess anisotropic properties.
Piézocéramics as Titanate of Zirconate (PZT) are excellent
candidates for piezoelectric sensors and actuators.
Piézocéramics are polarized in the thickness direction and
exhibit transversely isotropic properties in the xy-plane.

It should be noted that the piezoelectric stress
coefficient matrix [e] is expressed in terms of the
commonly available strain coefficient matrix [d] using the
relation:

[e]=[D][d] (2

For a beam problem, one canuse 0,= 1, =1, =0 to
obtain the following reduced constitutive equations from
Eq. 1:
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where, Q,, and Q,, mterms of Q, (1, j = 1 + 6) are given by
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The strain displacement relations based on a first
order shear deformation theory associated with the
displacement field are given by

e 2N

Foox ox (5)
Vo= g

XZ ax

with Y+ p = dw/ix

where:

vandw = Displacements m the x and z directions,
respectively

1] = The rotation around the y axis

Finite element formulation: The variation kinetic energy
can be expressed as:

0
T:%jp{u w o [T]: Wb (6)
f
with
h 0 0
[T]=]0 n o ()
o0
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Integrating with respect to x, the kinetic energy can
be expressed by:

7= {af"[M]-fa} ®)

where (M) is element mass matrix.
The variation in the strain energy is expressed by

afy 15 7]
,fj "lox ox z dv (D

+ Qo {1, } {¥.}

eyl

Integrating with respect to y and z first and then the
result should be integrated with respect to x, strain energy
can be expressed by

U= {af (K] a} 10

where (K) 1s the element stiffness matrix
The differential of the total energy expressed in terms
of T, U, q, 4 and tis given by

dfary er ou_, an
dt| dq; | dq 8q1
Where:

{a. ) ={u.wow.u,wuy ]

{q1}: {ulawla‘ijn---auNaWNa‘ifN}

Replacing U and T by their expressions in the Eq. 11
and 12 of motion are obtamed as:

[M]{a} +[K]{a} = {F} (12)

The approximation of the solution is made by
polynomials functions called interpolation functions as:

u=[N;]. {q} (13)
w = [P,L[B] " {g} (14)
= [R][B] " {q} (15)

Substituting these equations, the element mass and
stiffness matrices can be express as:

dx |(16)
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Where:
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In this study, we consider 2 types of loads.
Concentrated and umformly distributed loads.

Having established elements mass and stiffness
matrices and element loads vector, it's necessary to
assemble them to obtam the global matrices. The Eq. 18 of
motion becomes:

[MG]{Q}JF[CG]{Q}JF[KG]{(]}:{FG}+{FF} (18)
where:
[Mz;] = Global mass matrix
[K:] = (lobal stiffness matrix
{F,} = Global loads vector
[Ca] = (lobal damping matrix
RESULTS AND DISCUSSION

To validate the present model, the results obtained
for a clamped-free beam are compared with those of
(Sunar and Rao, 1997). The observed error, according to
the number of elements, varies from 0.009-3%.

We considered several parameters to analyze their
influence on the behaviour of the beam: The structural
damping coefficient, the thickness and the length of the
plezoelectric patch with various boundary conditions.
Results obtained by the present model are shown in
Fig. 1 at 12.

The beam’s length, width and thickness are:
L=40cm,b=1cm, e =0.5 cm. A umformly distributed
load of 10° N/m?® is applied to the beam.

As shown in Fig. 2-5, the deflection at the free
end of the beam decrease upto 20%. On Fig. 6-8, the
mfluence of the length of the piezoelectric patch is
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studied. We notice an increase of the deflection. These
same remarks were made by Chandrashekhara and
Donthireddy (1997).
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Fig. 9: Displacement w (m). Clamped-free beam
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Fig. 7. Digplacement w (m). Clamped-clamped beam

The results shown m Fig. 9-12 indicate a light
decrease of deflection and rotation in the free end of the
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Fig. 10: Displacement w (m). Clamped-clamped beam

beam for thicknesses of the piezoelectric patch varying for
hy, = (0.2 +0.6) h. This is due to the increase of the load
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Fig. 12: Displacement w (m). Clamped-simple supported
beam

vector, due to the piezoelectric element, by increasing the
thickness of the piezoelectric patch what decreases the
global load vector.

CONCLUSION

A finite element formulation based on the first order
theary of Kirchoff is used to analyze beams with
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integrated piezoelectric actuators and sensors. The lateral
strains are taken into account in the equations of beams.
Several parameters are taken mnto account to study their
influence and to demonstrate the efficiency of the
plezoelectric materials in controllng the vibrations of
beams.
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