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Some Modes of the Incompressible Flow on an Elliptic Cylinder
at Low Reynolds Number
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Abstract: We consider the numerical simulation of the two-dimensional viscous flow over a solid ellipse with
an aspect ratio equal 3.5. Sufficiently far from the ellipse, the flow 1s assured potential. The flow is modelled by
the two dimensional partial differential equations of conservation of masse and moment, using elliptic
coordinates. The finite volume method is used to discritize the model equations. The numerical solutions
revealed that the flow over the ellipse is steady with zero vortex up to Re = 40. For Reynolds numbers between
50 and 190, the flow is steady with two vortices m the wake. For Re = 210 the flow becomes unstable with
harmonic oscillations: The two vortices are alternate in the time with a Strouhal number equal to 0.2075. For the
Reynolds number between 220 and 280 the vortices are detached one after other. The spectral analysis of the
discrete time variation of the flow velocity at a point within the upper vortex shows that the dominant

oscillations frequency 1s £ = 0.2748.
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INTRODUCTION

There have been many experimental and numerical
studies of fluid flow from elliptical cylinders. Schubauer
(1939) studied experimentally the distribution of velocity
in the laminar boundary layer on the surface of an elliptic
cylinder with axes ratio equal to 3. He found that the
velocity distribution in the boundary layer, its thickness,
and 1ts separation from the surface of the body depend
entirely on the velocity distribution in the region of
potential flow, outside the boundary layer. Yano and
Kieda (1980) presents an approximate method for solving
Ossen’s linearized equations for two-dinensional steady
flow of incompressible viscous fluid past an inclined
elliptic eylinder at low Reynolds numbers. Aspect Ratio 1s
AR = 0.1 and 0.5. The Reynolds number varied between
0.01 and 5. Angle of attack 1s: & = 0°, 45 and 90°. The drag
and lift coefficients have maximum values at ¢ = 90 and
o = 45°, respectively. Mittal and Balachandar (1996)
conducted two and three dimensional simulations of an
mcompressible viscous flow over elliptic cylinders. They
used spectral methods. The ellipse aspect ratio is AR =2
and the span wise aspect ratio A = 2. Two angles of attack
0 and 45° were considered. The Reynolds number is
fixed to 525. The drag coefficient calculated with the
three-dimensional simulation agrees better with the
experimental value than that of the two-dinensional
simulation. The values of the coefficient of drag obtained
with the two-dimensicnal simulation are 74, 16 and 1.3%

higher than those obtained with the three-dimensional
simulation. Allessio and Kocabiyik (2001) studied
numerically the flow of a viscous mcompressible fluid
past an inclined elliptic cylinder which starts translating
and oscillating impulsively. These oscillations are allowed
in a direction perpendicular to the uniform oncoming flow
having a magnitude which 1s less than or equal to the
constant translational velocity. The investigation is based
on an implicit finite difference/spectral scheme for
integrating the unsteady Navier-Stokes equations
expressed in a stream function/vorticity formulation. The
Reynolds number is fixed to Re = 10°. Two angles of
attack ¢ = 45° and & = 90° were considered. They examine
the effect of increase of velocity ratio on the near-walke
structure as well as the hydrodynamic forces acting on
the cylinder. Vortex dynamics close behind the cylinder
are affected by the changing acceleration of the cylinder.
An interesting phenomenon has been observed in the
flow patterns depending on the velocity ratio and the
angle of inclination. Tn all cases considered in this study,
the C, curve oscillates with the forcing frequency of the
cylinder whereas a switch over in the nature of the
fluctuations of the drag coefficient 1s observed with the
increase of angle of inclination. Choi and Tee (2001)
studied experimentally the flow characteristics around an
elliptic cylinder with axes ratio of AR = 2 located near a
flat plate. The Reynolds numbers Based on the height (B)
of the elliptic cylinder and the boundary layer thickness
(8) were Re, = 13600 and Re, = 48000, respectively. Tree
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angles of attack: -5, 0 and +5° were considered in order to
study the interaction between the cylinder wake and the
boundary layer. As the angle of attack varies, the location
of the peak pressure on the windward cylinder surface
moves towards the rear edge of the cylinder, while that of
the leeward surface moves toward the front edge of the
cylinder. At positive angles of attack, the location of the
minimum swface pressure on the flat plate moves
downstream slightly, whereas it moves upstream for
negative angles of attack. Johnson et al. (2001) studied
numerically the flow around an elliptical cylinder with
varymg aspect ratios and Reynolds numbers. They used
spectral methods. The aspect ratios ranging from 0.01 to
1.00 and for Reynolds numbers ranging from 30-200. Six
different types of flow patterns were categorized in the
simulations. These were, steady flow, Von Karman-type
vortex shedding, symmetric wake, transitional vortex
shedding, steady secondary shedding and unsteady
secondary shedding. They have shown substantial
change in the shedding types caused by the convective
instability interacting with the vortex shedding occurring
behind the cylinder. Khan ef al. (2004) studied analytically
heat transfer and flow around elliptical cylinder in the
Reynolds number range of 10° to 10°. The ellipse aspect
ratio is AR =2, 3 and 4. Three general correlations, one for
the drag coefficient and two for the heat transfer under
each thermal boundary condition, have been determined.
It 13 observed that the drag coefficients are lower whereas
the average heat transfer coefficients are ligher for
elliptical cylinders than for circular cylinder. In this study,
we consider the two-dimensional numerical simulation of
the incompressible flow around an elliptic cylinder. The
ellipse axes ratio is fixed to 3.5 and the flow far away from
the solid ellipse (outer boundary condition) 15 assumed
potential. The Reynolds number is varied from 10-280.

MATHEMATICAL MODEL

The transformation equations from the elliptic
coordinates to the Cartesian coordinates are:

x = a cosh (&) cos(n) (1)
y=asinh(e)sin{n)

Where, a 1s the distance between the center and the foci
of the ellipse. Lines of constant & correspond to confocal
ellipses and lines of constant 1 correspond to hyperbolas.
The metrics of the transformation are:

h,=h,= a,’sinh2 (g)+sin*(n) (2)
The Jacobian of the transformation 1s:
J(e.m)=hh, (3)
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The flow around the ellipse is modelled by the
conservation partial differential equations of mass and
momenta (Navier-Stokes equations ), with their initial and
boundary conditions. The non dimensional model
equations are written in the elliptic coordmnates system:
The initial conditions:

Att=0,
4
Fort=0

The equation of continuity:
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The model equations ae solved with the foll owing
boundary conditi ons:
Atthe sxface of the ellipse: o= = 0.2039:

(£)
At the outer boundary of the domain according to

Gortier (1968, the flow is asmwnedis potertial and hence:
Ate=g =3

, ) 7
ME
v, = _E[H_ ll:sl:li|cash[a] sin(n)
WAt
o) = o H RN EA) -

wiz)=- |:1+cush[zj-h1[tﬂrll1[%:|[|

NUMERICAL DISCRETIZATION AND SOLUTION

1
cosh(z)

This study, we use the finite wolume method to
descretize the model equations. The time derivative terms
ate descretized as follows:

By T gt 4R
it 2at

Al the conrective atud non linear terms as well asthe
diffusive terms (except the first and the second on the
right of Eq. & and 7 are tem porally descretized with the
Adam-Bashforth second acowate scheme:

¢|L+LL — 2 ¢I. _ ¢||.—.6L

This second order discretization is that of Adam-
Bashforth. The presswre terms and the first bwro diffusive
tertr s onthe right of Eqg. & and 7 are i plicit thet means
they are evaluated at time [t + Af).

We use the central difference spatial discretization
which iz second oder acowate. Thus, the ramerica
discretization of this siady is second order accurate in
space atd time the thacation erroris of second order.
& discretizati on equation is obtained by the mudtiplication
of the differential equation by the differentisl volume
Ii(g m) de dn and the double integration between the
limits of the considered firdte volwne, The details of the

i

discretizati on of the model equati ons, with the method of
firdte wolwmn es, are similar to those preserted by Patankar
(19E07 for the Cartesian case. Howewer, in this stady, the
discretization 15 second order accurate whereas that of
the mentioned reference is first order acowrate. Each
discretizati o ecuati on has the form:

Lot =h at s s B A, R4S

The sequential solution of the systems of
discretization equations follows the Simpler algorithm
(Patanbar, 19201, The lnear systems of discretization
equations are solwed by the method of sweeping uaing
the algoritben of Thomas and the ti diagonal eyelic
algorithm. A 622142 uniform gridis used From the initial
cotditiong, tithe marchingis cortinued with the time step
At = 10% wtil a steady state solution is obtaned or an
established transient flow 1z obtained.

RESULTS

In Fig. 1, we present the presswe field and the
streamlines of the flow obtanedwith Fe =10 Thiz flow is
steady. The presawe field is spumetric with respect to
the horizontal avis The maximwn pressure is located on
the ellipse leading edge. Between the leading edge and
the trailing edge, the pressure decteases contirnously.

For Reynolds munbers betaeen 50 and 200, we
ohtained aflow with two vortices (Fig 2). Thiz flow iz dso
steady and symmetric with respect to the hotizortal line.
On the ellipse, the points of separation for Be =170 are
1 = 0612 and r) = 5668, We cheerve two fixed condra
rotating wortices between the points of separation and the
downstream of the trailing edge The size of the vortex
gowrs as the Reynolds mamber increases. On the ellipse

Fig 1: The field of presswe and linens of curent for
Re=10
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Fig. 2: The pressxe fleld and stream lites for Re=170
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Fig 3: Temporal variation of welocity for e =210

surface, the mavitmum pressre is at the leading edge, it
decreages downstreasm up to the poitat 1) = 1 499 on the
upper saface and v = 479 on the lower sutface. From
these poitts to the trailing edge the presawe increases
slightly.

For the Rernolds mamber equal to 210 the flow
becotmes wastable: oscillatory and harmorde. InFig 3, we
record the titne oscillations welocity at three locations:
(=046 1n=0177,c=044% 1 =0398) and(z =0 48,
1 =06200 Tomake e that the temporal oseillati ons of
the flow are plorsical and not mamerica, we reduced
the step from to At= 107" to At= 510" we obtained the
sathe ogcillations (with the same amplide and
frecuency). The spectral analysis of the velocity time
oscillations W, (2 =0.48%, vy = 06207 has shown that the
frecuencyisf= 02075 (Fig 4).

InFig 5, we represent the field of pressure and the
streanlines of the flow. It is noticed that the flow iz
agynmetrical in the zone of the wake compared to the
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Fig & The spectruam of energy for Fe = 210

Fig 5:The pressue field and stream lines for Ee =210

horizortal axiz of the ellipze The two vortexes are of
differerd size. The maximum pressire is located o the
edge of attack and decreases gradudly on the swface of
the ellipse up to the points: 1 = 1 535 onthe upper auface
atid 1) = 4577 onlower suface.

When the Reynolds ronber is vatied between 220
ahd 280, the flow remans wnsteady with hatmoonde
oscillatory. It Figo 6, we recorded the titne oscillations
of the velocity at three locations: (2 =0468, 1 =0.17T),
(2=0462 n=039) andiz =048, vy = 0.620). To make
sur e that the temporal oseillations of the flow e phyrsical
and not munerical, we reduce the step fram A= 107 to
At = 5107 and we obtained the same oscillations
(with the zame amplitnde snd frequency). The spectrdl
atalyais of the velocity time oscillations of the welocity
V,(2=0485 1 = 0177 has shown that the frequencyis
f=02748 (Fig. 7).

In Fig E, we illustrate the presswe field and the
streamlines of the flow chtained withFe= 220 atthe time
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Fig & Temporal variation of welocity for Re =280
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Fig &: The presaure field and stream lines for Re =220

t= 404 Itis noticed that the flow in the zone of the wake
is ampmnetric with respect to the horizontal awis of the
ellipse. The two vortices close to the trailing edge hawe
different sizes: the wpper vortex iz larger. The marimum
pressure iz at the leadingedge. Alohgthe swface of the
ellipze, the pressure falls staring from the leading edge up

ok

1’-
2.0 ﬁ ARc =18
FY 3
a4 —He=1M
1.5+ iy NHo =18}
10 ey
i)
M_
0.0
{15
-Lp .

2 3_ 4 5 6 7
|

6 1
Fig 9: Variationn of pressuwe coefficend with the
Reynolds mamber

tor = 1.555 on the upper satface and n = 4577 on the
lowrer suface. From these poirds to the trailing edge the
pressxe increases slightly (Fig 9.

CONCLUSION

Itithis study, we considered the romerical sinndation
of the incompressitle two- dimensi onal external flow owver
an elliptic cylinder. We fix ed the aspect ratio &F = 3.5 and
we varied the Reynolds o bers betereere 10 and 280, We
found 3 flow regimes. For Reynolds munber s between
10 atd 40, we forrad aflow with novortices. For REeynolds
munbers between 50 and 200 we obtained a flow with
two vottices attached to rear of the elliptic cylinder. For
Ee = 210 the flow becomes unstable with harmonic
ogcillations: The two wottices ave alternate inthe time with
a Bty oubal mamber ecpal to0.2075. For Reynol de mambers
betweer 220 and 250, the flow bifurcates to an oscillatory
hamaoticregime with a frecuency £ = 02748
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