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Identification and Prediction of Wastewater Treatment Parameters
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Department of Electronics, Faculty of Engineering, University of Setif, 19000 Algeria

Abstract: Tn this study, neural networks are extensively used to identify and predict wastewater process
parameters. Three methods are implemented to drive the system’s operation. In the first one difference neural
networks mputs are ignored but considered in the second, an extended Kalman filter implements the third one.
High performance is derived from our approach which considers input difference effects and therefore, fits

better to overcome the complex wastewater problem.
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INTRODUCTION

Wastewater treatment plant of domestic wastewater
15 dynamic systems which deal with considerable
variation in flux, concentration and composition of
pollutants. Mathematical models describing the behavior
of microbiological systems are important as they provide
a mathematical description of process mechamsm strongly
required for identification and control of the wastewater
process.

The aim of the mathematical modeling 1s to get the
right operations which express and describe the behavior
of the study system. Generally models depend on several
factors, which take in charge the whole complexity and
available information about the process. When given a
suitable model, 1dentification and control process system
can then be derived.

In 1983, International Water Association (IWA)
formed a working group charged to promote and facilitate
the practical methods of designing the biological
wastewater treatment operations.

As result, the Activated Sludge Modell (ASMI1 ) has
been presented m 1987 (Henze ef al., 1987). The model
used thirteen state variables and described the organic
carbon and nitrogen elimination. The same working group
extended the model afterwards by adding the biclogical
process of phosphorus elimination, and named this model
the Activated Sludge Model 2 (ASM2) (Henze ef al,
1995). Two new improved versions of ASM2, named
ASM2d and ASM3 then appeared (Henze et al., 2000).

Identification of non-linear process has always been
a problem, as long as the mathematical model structure
can hardly be known in advance. Artificial neural
networks opened a new horizon in identification and
control of highly nonlinear and complex structured

systems. This approach can approximate large variety of
relationships for identification such as a wastewater
treatment plant which possess very strong nonlinear
properties.

The prediction operation is used to estimate next
right state output. Three approaches are developed in
this research. The first approach has been proposed n
Sergiu ef al. (2007) where neural networks input
differences are excluded In our case, the operation
uses neural networks and implements input differences
and both methods are checked through extended Kalman
filter support.

THE WASTEWATER PROCESS MODEL

The mathematical model considered in this study
has been proposed in Nedjari et al. (1999). This latter
supposes the following assumptions:

»  The system runs in steady-state regime
(Fin =Fout =F, D=F/V)

» The recycled sludge 13 proportional to the
process flow (F). F, = r. F, where r is the recycled
sludge rate.

»  The flow of the sludge removed from the bioreactor
(sludge that 13 in excess) 1s considered proportional
to the process flow (F): F; = P. F, where is the
removed sludge rate.

»  There 1s no substrate or dissolved oxygen in the
recycled sludge flow of the bioreactor.

¢ The output flow of the aerated tank is equal to the
sum between the output flow of the clarifier tank
(settler) and the recycled sludge flow.
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Figure 1 presents the schematic diagram of the
wastewater treatment process. The aeration tank 1s a
biological reactor containing a mixture of liquid and
suspended solid. In order to remove the organic substrate
from the mixture a microorgamsm population 18 grown.

Where X(t)-biomass, S(t)-substrate, DO(t)-dissolved
oxygen, DO, _-maximum dissolved oxygen, X, (t)-recycled
biomass, D(t)-dilution rate, S, and Do, Substrate
and dissolved oxygen concentrations in the influent,

The clarifier tank is a gravity settlement tank where the
sludge and the clear effluent are separated. A part of the
removed sludge 1s recycled back mto the aeration tank
and the other part is then removed (Katebi et al., 1999). bioreactor X, DO, S(+).D Se)tge' Eﬂluem-;
Under these conditions, the process model is given S.D0wDy | 5, %, DO S, (1I-HD
by the following mass balance equations: Settled sludge
X, @+HD Waste
dX Recycled sludge sludge
s U - DO + DX +DOX (1) XiD 0"
s pit) 2
Y X(t) = DA +1)S(O+1D(L)S,, @ Fig. 1: Wastewater treatment process diagram
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wit) = S(t) DO(t) (5) Fig. 2: The systemic diagram of the wastewater treatment
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Fig. 3: Open loop system response
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Y-biomass yield factor, p-biomass growth rate, W,
maximum specific growth rate K, and K saturation
constants, «-oxygen transfer rate, W-aeration rate, K-
model constant, r and p ratio of recycled and waste flow
to the influent. The model coefficients have the following
values:

Y=065p=02,2=0018Kp=2mgL " K,=05
W = 0.15mg L™ Ky =100 mg L7,
DO, =10mg L™, r=06.

The systemic diagram of the process is given in
Fig. 2.

Figure 3 illustrates the open loop response of the
system to a step input D = 0.1h™" (W = 80 h™"). The initial
conditions considered in this simulation are:

X(0) = 200 mg L™ S(0) = 88 mg L™ DO(0) = 5mg L™
X(0) =320 mg L' DO, = 0.5mg L™ S, =200 mg L.

During normal wastewater treatment process
operation, three regimes have been identified: rain (D =
1/20h ' W=80h", normal (D=1/35h"'W=60h")
and drought (D = 1/50 h™ W = 20 h™). The first case is
characterized by maximum values for the aeration and
dilution rates, the second regime considers medium values
for W and D. The third case is characterized by small
values for the same parameters.

SYSTEM IDENTIFICATION USING
NEURAL NETWORKS

The system to be identified can be represented by a
transformation operator TP, which maps the compact
subset U € R"to Y £ R® The purpose is to find a class T,
such that T, is represented by T, adequately well. The
operator T, is defined by specific input-output pairs that
are obtained form the mputs and the outputs of the
system to identify (Duder, 1996).

The objective is expressed as follows;

T.(w)-T, (U)HSS,U eU

for some desired €>0. T,(u) denotes the identification
model output. As can be seen easily, the approach
requires the input-state-output representation of the
system. Generally, a continuous time dynamical system
can be given by:

dx(t) _

dt

X(t) = O[x(tLu(t)] teR*

y(t) = Px(t)]

(6)
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Fig. 4: Neural identification structure

Where:
() = [x, (1) x,(t) ..x, ()]
u(t) = [, (t) u,(t) .u, (O]
y(t) =1[y,(t) y,(t) .y, (0]

denoting state, input and output vectors, respectively.
In discrete domain, Eq. 6 becomes:

x(k+1) = O[x(k), uik)]
yik) = "Fx(k)]

Even m the cases where ® and ¥ are not known,
neural networks can construct an approximate model
which when the same input vector is applied to both the
actual plant and the identification model, the difference
between the outputs remains within a predefined error
level.

System identification structure is illustrated in Fig. 4.

The emphasis on the neural network based
identification is determination of an adaptive algorithm
that minimizes the difference between the actual plant and
the identification model outputs by using a set of traming
pairs which represent the approximate behavior of the
actual plant.

In thus study, our simulation results are presented n
Fig. 5. The plant consists of a wastewater whose model is
expressed by the Eq. 1-4.

Identification model: 6-28-20-4
Inputs:

D(k) = 0.05+o.o5sm(2“kj
100
27k

Wik)= 50 + SOsin [iJ
100

Errors between plant output and 1dentification model
output are illustrated in Fig. 6.
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THE INTERNAL PROCESSMODEL First model architecture: The proposed model by
Sergiuet al. (2007) iz illustrated in Fig 7.
Autificial neural networks fort an im portant cdass of It this contritntion a feed forward neural networks

nonlineat systers, with many applications in modeling 15 used  to model the behavor of the wastewater
and contral. As mathematically proven (Dnder, 1996), aty treatmert process. The proposed neural network has
static continuious nonlinear function can be approximated  three layers. The first two hidden layers contains 15, 7
athitrary well over a compact interval by a multilayer newrons, tespectively., The output layer has only 4
neural network with one or more hidden layers. neurons. In  order to  appropriately capture  the
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interconnections between all variables, up to four time- Data used to train the neural network was obtained
delayed inputs and states values have been supplied to by imntegrating the differential Eq. 1-4, considering
the networl. randomly varying dilution rates in the interval [0, 0.1] and
Thus the neural model predicts X(t), S(t), X(t) and randomly varying aeration rates in the mterval [0, 100].
DO(t) as functions of: Before training, the data was scaled the interval [0, 1]. In
the same mammer, a second data set was generated and
D(t-1) D(t-2) D(t-3) W{t-1) W(t-2) W(t-3) used to validate the accuracy of the model.
AH(t-1) X(t-2) K(t-3) X(t-4) 8(t-1) S(t-2) S(t-3) In Fig. 8, we note the difference which arose between
(1) X (1-2) X (t-3) X (t-4) the actual and the neural model and proved by through
DO(t-1) DO(t-2) DO(t-3) magnitude errors plotted in Fig. 9.
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Fig. 7: First model architecture
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Fig. 8: Actual and predicted outputs, solid: Predicted outputs, dashed: Actual outputs
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Fig 10: 3ystem architecture proposed

Second model architecture: In  this  stody, we
have proposed a new atchitecture as  dlustrated in
Fig. 10

This architectar e i3 i ghly similar to the first one, et
in this case the outpot of newral networks is gven rather
the differenice Ay ().

& thorough study of the present results given in
Fig 11 and 12 show large improvem ents and so it coudd be
hard to compnate any difference between the predicted and
actaal output.
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The neural model predicts AXL), AS(), ADOCK) and
A KD as below and expressed in terms of the foll owing
irguts:

Hik-1) a¥(k -1 X(k-2) a3k -2,

Sk —1) &5k —1) S(k - 2) AS(k - 2,

DOk -1y ADO(k —1) DOX(k - 2) aDO(k - 2,
W (k-1) A% (k-1 X (k-2) o (k-2),
Dik—1) aD(k - 1) D(k - 2) AD{k -2,

Wik -19 AWk —1) Wik-2) AW(k -2,
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Fig. 11: Actual and predict outputs, solid: Predicted outputs, dashed: Actual outputs
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THE EXTENDED KALMAN FILTER

In thiz study, the extended kalman filter iz conzidered
a one step predictor for the dizzolved oxvgen.
Taylor’s first approximation iz used to linearize zystem’s
equations.
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In order to implement the continuous
time extended Kalman filter, four steps are
needed:

The =zystem
follows:

equations  are  expreszed as

44



J. Eng. Applied Sci., 3 (1): 38-46, 2008

0 260 4;]0 660 860 1600 12I00
Fig. 13: Measured and predicted dissolved oxygen
outputs, solid: Predicted outputs, dashed: Actual

outputs

x = f(x,u,w,t)
y=hx, v, 1)
w (0, Q)
v~{0,R)

(8)

+ Compute the following partial derivative matrices
evaluated at the current state estunate:

9

ov

£

*  Compute the following matrices:

(10)

¢ Execute the following Kalman filter equations:

x(0) = E[x(0)]

P(0) = E[(x(0) - %(0)) (x(0) —X(0))"]
f=fXuw,t)+ K[y—h(X,v,.t)]
K=PCTR™

P=AP+PAT + Q-PCTR™ PC

Where the nominal noise values are given as w, = 0
and v, =0.
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Fig. 14: Error between measured and predicted dissolved
oxygen outputs

In this research:
Xx=Ax+Bu

(1)
y=0Gx+v
The state vector 1s defined as:
x=[X § DO X'
The partial derivative A matrix 1s obtained as:
[ HOX(D)
0-D(tx1 e ———
p(t) - D1 +1) s+ 80)SO
ITCRTC R
A= % -y K Y torsmpsn Do
_ Kyt KK, ut)X()
Y Y (Ks+S()8(t)
 D(t}1+1) 0
. pOXIL) DIt
(Kpo+ DAHDO()
_ Ko n(HX(t) 0
Y(K,,+DO(t)DO)
_ Ko Ky uit)Xit) _
oW Y(K,p + DO)DO) DX+ 0
—D{(B+r) |

Where, u(t) is specified by Eq. 5.
The partial derivative B matrix is obtained as:

—(+ DX+ X, ()
B af —(1+1)S(t)+15,
T ou | -(14+n)DO(t)+ DO,

A+ X0 - (B+oX (D)
And
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G=[0 01 of
c=1
L=0
M=1

Results are presented in Fig. 13 and 14,
CONCLUSION

The complex wastewater problem has been modelled
on using neural networks. The proposed technique in this
study, allowed correct parameters prediction and thus
represents a suitable alternative approach. Our future
research focuses on neural fuzzy prediction to take in
charge the three main aspect of anaercbic, anoxic and
aerobic phenomena.
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