ISSN: 1816-949K
© Medwell Journals, 2008

Medwen

Online

Journal of Engineering and Applied Sciences 3 (1): 118-122, 2008

Comparative Study of Implementation L.anguages on Software
Complexity Measures of Quick Sort Algorithm

S.0. Olabiyisi, R.O. Ayeni and E.O. Omidiora
Department of Computer Science and Engineering,
Ladoke Akintola University of Technology, P.M B. 4000, Ogbomoso, Nigeria

Abstract: In this study, we apply different software complexity measures to Quick sort algorithm. Our mtention
18 to study what kind of new information about the algorithm the complexity measures (Halstead’s volume and
Cyclomatic number) are able to give and to study which software complexity measures are the most useful ones
m algonthm comparison. The results explicitly show that Quick sort has the least Halstead’s Volume, Program
Difficulty and Program Effort when programmed m Assembly language.

Key words: Software complexity, quick sort, halsted complexity measure, cyclomatic complexity measure

INTRODUCTION

A programmer usually has a choice of data structures
and algorithms to use. Choosing the best one for a
particular job involves, among other factors, two
umportant measures:

Time complexity: How much time will the program take?
Space complexity: How much storage will the program
need?

A programmer will sometimes seelk a tradeoff between
space and time complexity. For example, a programmer
might choose a data structure that requires a lot of
storage in order to reduce the computation time. There 1s
an element of art in making such tradeoff, but the
programmer must make the choice from an informed point
of view. The programmer must have some verifiable basis
on which the selection of a data structure or algorithm.
Complexity analysis provides such a basis.

Complexity 13 a measure of the resources that must be
expended m developing, implementing and maintaining an
algorithm. Productivity is chiefly a management concern
while reliability is a quality factor directly visible to users
of software systems. These externally visible attributes of
software processes and products are strongly mfluenced
by engineering attributes of software such as complexity.
Well-designed software exhibits a
unnecessary complexity, unmanaged complexity leads to
software difficult to use, maintain and modify. It causes
increased development costs and overrun schedules.

minimum of

Algorithms are frequently assessed by the execution
time and by the accuracy or optimality of the results. For
practical use, an important aspect is the implementation
complexity. An algorithm, which is complex to implement,
requires skilled developers, longer implementation time
and has a higher risk of implementation errors. Moreover,
complicated algorithms tend to be highly specialized and
they do not necessarily work well when the problem
changes (Akkanen and Nurmimen, 2000).

Algonithms can be studied theoretically or
empirically. Theoretical analysis allows mathematical
proofs of the execution times of algorithms but can
typically be used for worst-case analysis only. Empirical
analysis 1s often necessary to study how an algorithm
behaves with typical mput see (Sedgewick, 1995).

Ball and Magazine (1981) listed criteria for the
comparison of heuristic algorithm that m addition to
execution time include ease implementation, flexibility and
simplicity. Controlling and measuring complexity is a
challenging engineering, management and research
problem. Metrics have been created for measuring various
aspects of complexity such as sheer size, control flow,
data structures and intermodule structure.

Complexity measures can be used to predict critical
wnformation about reliability and memtainability of
software system from automatic analysis of source code.
Complexity measures also provide continuous feedback
during software project to help control the development
process. During testing and maintenance they provide
detailed mformation about software modules to help
pinpoint areas of potential instability.

Corresponding Author: S.O. Olabiyisi, Department of Computer Science and Engineering, Ladoke Akintola University of
Technology, P.M.B. 4000, Ogbomoso, Nigeria

118

J. Eng. Applied Sci., 3 (1): 118-122, 2008

MATERIALS AND METHODS

Software complexity measures: Software complexity is
one branch of software metrics that i1s focused on direct
measurement of software attributes, as opposed to
indirect software measures such as project milestone
status and reported system failures. Current military
metrics programs emphasize non-complexity metrics that
track project management information about schedules,
costs and defects. While such project tracking measures
are necessary to any substantial software engineering
effort, they lack predictive power and are thus inadequate
for risk management. Complexity measures can be used
to predict critical information about reliability and
maintainability of software systems from automatic
analysis of the sowrce code. Complexity measures also
provide continuous feedback during a software project to
help control the development process. During testing and
maintenance, they provide detailed information about
software modules to help pmpoint areas of potential
instability.

Many of the factors affecting software quality that
have been identified by researchers can be seen in part as
functions of the complexity and size of the program and
the capabilities of the programmers and managers. This
will include, but 1s not limited to, testability, efficiency,
legibility and structuredness.

There are a number of ways to quantify complexity in
a program. The best-known metrics, which provide such
feature, are McCabe's (1976) cyclomatic number and
Halstead's (1977) volume. These metrics have been
extensively validated and compared (Aggarwal et al,
2002; Ramil and Lehman, 2000; Bezier, 1984; Curtis, 1981
Schneidewind and Hoffiman, 1979).

Halstead’s complexity measures: Halstead argued that
algorithms have measurable characteristics analogous to
physical laws. His model 13 based on four different
parameters: the number of distinct operators (instruction
types, keywords, etc.) in a program, called nl; the number
of distinct operands (variables and constants), n2; the
total mumber of occurrences of the operators, N1 and the
total number of occurences of the operands, N2. The sum
of nl and n2 1s denoted as n while the sum of N1 and N2
is called N. From those four counts, a number of useful
measures can be obtained. The number of bits required to
specity the program is called the volume V of the program
and 1s obtained through the equation.

V=NlogZn

The program level, which 1s the difficulty of
understanding a program, is calculated by

119

L =(2n2)(n1N2)
And the intelligence content of a program is given by
I=L =V

In an attempt to include the psychological aspects of
complexity in the measures, Halstead studied the
cognitive processes related to the perception and
retention of simple stimuli. As reported by Olabiyisi (2006)
and Olabiyisi et al. (2007), the mean number of mental
discriminations per second in an average human being,
also called the Stroud number, is between 5 and 20.
Halstead uses 1% ag a reference point for his studies. In
his model, the number of discriminations made in the
preparation of a program, called effort, 1s given by

E=V/L

All of these measures are valid under the assumption
that the program is "pure," i.e., free of so-called "poor
programming practices.” Halstead defines six classes of
impurities, among them, synonymous operands,
unfactored expressions and common sub expressions.
The complete description of these and other impurities is
beyond the scope of this study. However, for the
programs used for this study, all recognizable impurities
were eliminated prior to obtaiming the corresponding
Halstead measures.

Cyclomatic complexity measures: Cyclomatic complexity
15 the most widely used member of a class of static
software metrics. Cyclomatic complexity may be
considered a broad measure of soundness and confidence
for a program. Introduced by Thomas McCabe m 1976, it
measures the number of linearly mdependent paths
through a program module. This measure provides a
single ordinal mumber that can be compared to the
complexity of other programs. Cyclomatic complexity is
often referred to simply as program complexity, or as
McCabe's complexity. Tt is often used in concert with
other software metrics. As one of the more widely-
accepted software metrics, it is intended to be
independent of language and language format. Cyclomatic
complexity has also been extended to encompass the
design and structural complexity of a system (Mc Cabe
and Charles, 1989, Olabiyisi, 2006, Olabiyisi et al., 2006).

The cyclomatic complexity of a software module
is calculated from a connected graph of the module
(that shows the topology of control flow within the
program):

Cyclomatic Complexity (CC)=E-N+p

J. Eng. Applied Sci., 3 (1):

<

Upward flow ——- -6
Downward flow -7
-9
-10
11
Cyclomatic complexity =7 12

Essential complexity” = 1 13

Design complexity’ = 4

1

The complementary 18

technologies for definitions
of these terms

19

-20

Fig. 1: Connected graph of a simple program

Where
E = The number of edges of the graph
N The number of nodes of the graph
p = The number of connected components
To actually count these elements requires

establishing a counting convention (tools to count
cyclomatic complexity contain these conventions). The
complexity number is generally considered to provide a
stronger measure of a program's structural complexity
than 1s provided by counting lines of code. Figure 1 1s a
connected graph of a simple program with a cyclomatic
complexity of seven Nodes are the numbered locations,
which correspond to logic branch points; edges are the
lines between the nodes.

EXPERIMENT WITH QUICK SORT ALGORITHM

The quick sort 15 an m-place, divide-and-conquer,
massively recursive sort. As a normal person would say,
it's essentially a faster in-place version of the merge sort.
The quick sort algorithm 1s simple in theory, but very
difficult to put mto code (computer scientists tied
themselves into knots for years trying to write a practical
implementation of the algorithm and it still has that effect
on umiversity students).

The recursive algorithm consists of four steps (wlich
closely resemble the merge sort):

» If there are one or less elements in the array to be
sorted, return immediately.

120

118-122, 2008

Pick an element in the array to serve as a "pivot”
point. (Usually the left-most element in the array 1s
used.)

Split the array mto two parts-one with elements larger
than the pivot and the other with elements smaller
than the pivot.

Recursively repeat the algorithm for both halves of
the original array.

The efficiency of the algonthm 1s majorly impacted by
which element is chosen as the pivot point. The worst-
case efficiency of the quick sort, O(n’), occurs when the
list is sorted and the left-most element is chosen.
Randomly choosing a pivot point rather than using the
left-most element is recommended if the data to be sorted
1sn't random. As long as the pivot point i1s chosen
randomly, the quick sort has an algorithmic complexity of
O(n log o).

For the experiment, we used the complexity finder
machine designed in Olabiyisi (2006) to calculate the
complexity measures. To do so, the following actions were

taken:

The studied algorithm was coded using Assembly
Language, C, JTava, Pascal, Visual BASIC resulting in
five programs. for each algorithm.

The same programming style (modular programming)
was employed in the coding.

All the programs were run on the same computer.
Operands, operator, keywords and identifiers were
similarly defined for all the programs.

RESULTS AND DISCUSSION

Table 1 presents complexity measures of different
implementation languages for Quick sort algorithm.

Figure 2 plots the graph of Halstead’s volume for
different implementation languages for Quick sort
algorithm.

Figure 3 gives the graph of program difficulty for
different implementation language of the algorithm. While
Fig. 4 presents the graph of Program Effort for different
implementation languages for the studied algorithm.

There are interesting points to observe about these
graphs. Figure 2 shows that Quick sort has the highest
Halstead’s Volume when code in C. By implication, the
graph shows that Quick sort is best implemented in
Assembly language followed by Visual Basic, Pascal, Java
and C in that order.

Figure 3 indicates that if Program Difficulty is to be
considered, Quick sort algorithm mmplemented in
Assembly language is the best while Quick sort
implemented in C is the worst.

J. Eng. Applied Sci., 3 (1): 118-122, 2008

Anguage
Assentilylanguage

0
II- l | |
Print iew Close
Table 1: Quick sort complexity measures by different implementation languages
500000+ 500000~
450000+) 450000+
% 400000+ ;ggg%:
.E 350000 300000
S 300000+ 250000
2 9500004 .E 200000 1
150000 4
§ 200000 100000+
= 150000 500001
100000+ 0 T T T T 1
50000 Assembly C Java Pascal VB
0 Implementation languages
Assembl C Java Pascal VB . .
y Implementation languages Fig. 4: Graph of program effort for dieerent

Fig. 2. Graph of different implementation of the quick sort
algorithm

500000+

. 450000

2, 400000

%‘ 350000

2 3000001

% 2500001

200000+

150000+

£ 100000

500001

0 T T T T 1
Assembly C Java Paseal VB

Implementation languages

Fig. 3: Graph of program difficulty for different
mmplementation of the quick sort algorithm

In Fig. 4, we discover that considering the program
effort, Quick sort algorithm is best implemented in
Assembly language followed by Visual Basic, Pascal, Java
and worst implemented in C.

mmplementation of the quick sort algorithm

CONCLUSION
This research has considered software
complexity —measure experiment with Quick sort

algorithm. We study the Quick sort algorithm by
computing the Halstead’s Volume (V), the program
Effort (E), the program Difficulty (D) and the
cyclomatic number V (G) using different implementation
languages.

Software complexity might help
practitioners to choose, out of a large number of
alternatives, the algorithms that best match their needs.
Understanding the trade-off between implementation and
performance would give a firmer basis to decision-making.

measures

REFERENCES

Aldeanen, J. and J K. Nurminen, 2000. Case-study of the
evolution of routing algorithms in a network planning
tool. J. Sys. Software, 58: 181-98.

J. Eng. Applied Sci., 3 (1): 118-122, 2008

Aggarwal, K.K., Y. Singh and I.K. Chhabra, 2002. An
Integrated Measure of Software Maintainability. In:
Proceedings of Annual Reliability and Maintainability
Symposium, IEEE.

Ball, M. and M. Magazine, 1981. The design and analysis
of heuristics. Networks, 11: 215-219.

Bezier, B., 1984. Software System Testing and Quality
Assurance. Van Nostrand Reinhold, New York.

Curtis, B., 1981. The Measurement of Software Quality
and Complexity, Software Metrics (Eds.). A. Perlis
et al., MIT Press, Cambridge.

Halstead and H. Maurice, 1977. Elements of Software
Science. Elsevier North-Holland, New York.

McCabe, T.J., 1976. A Complexity Measure. TEEE. Trans.
Software Eng., 2: 308-320.

McCabe Thomas I. and Charles Butler, 1989. Design
Complexity Measurement and Testing. Commun.
ACM,, 32: 1415-1425.

122

Olabiyisi, S.0., 2007, Universal Machine for Complexity
Measurement of Computer Programs. Ph.D Thesis

Ladoke Akintola University of Technology
Ogbomoso, 2006.
Olabiyisi, SO, RA. Ganiyu, MO. Ekundayo,

0.0. Okedwran and O.0. Oderinde, 2007. Using
Software Complexity Measures to Analyze
Algorithms-An Experiment with Selection Sort
Algorithm: Ghana Joumnal of Science C.S.IR.-INSTL

Ramil, I.F. and M.M. Lehman, 2000. Metrics of Software
Evolution as Effort Predictors, A Case Study. In:
Proceedings of International Conference on Software
Maintenance, IEEE

Schneidewind, N.F. and HM. Hoffman, 1979. IEEE. Trans.
Software Eng., 5: 276-286.

Sedgewick, R., 1995, Algorithms in C++ Reading, MA:
Addison-Wesley.

