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Numerical Study of the Instability Patterns Between Counter Rotating Disks
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Abstract: The flow between counter-rotating disks for aspect ratio R/h = 7, 1s mvestigated numerically. This
flow gives rise to a new mnstability pattern, a circular chain of vortices connected to the boundary layers trough
spiral arms. The physical mechanism for this instability is elucidated: the balance between the centrifugal effects
of each rotating disk results in the detachment of the boundary layer over the slower rotating disk, leading to
a free shear layer in the bulk of the flow, witch becomes unstable via a Kelvin-helmholtz-type instability.
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INTRODUCTION

The flows above or between infinite rotating disks are
known as generalized von Karman, swirling flows. They
have been the subject of many studies, both fundamental
and applied. The reasons for this mterest are multiple.
First, this 15 a three-dimensional flow with an exact self-
similar solution which gives rise to a very rich class of
instability patterns. Secondly, this is model geometry for
turbomachinery, hard disk drive and geophysical flows.
On the one hand, instabilities occur on the mward
boundary layer over the slower rotating disk and result in
axisymmetric propagating circles or spiral rolls. The
latter pattern received the name of positive spirals
(Gauthuer et al., 2002), because they roll up to the center
i the direction of the faster disk. These two patterns are
also present m the rotor-stator flow, where they have
been widely studied both numerically and experimentally.
As shown by Gautluer ef al. (2002), the counter-rotating
case appears to be much richer: In addition to boundary
layer instabilities, it has been recently recognized that the
counter-rotating flow at high enough rotation ratio also
shows free shear layer instability. Ina cavity R‘h=2, at
a fixed value of the Reynolds number, Lopez et al. (2002)
first observed instability of wavenumber 4 and 5 in the
counter-rotating flow, in the form of “funnel-like” vortices,
that they attributed to a free shear instability. For a very
different aspect ratio R/h = 20.9, Gauthier ez al (2002)
reported a new instability pattern of wavenumber 9-11, in
the form of a spiral pattern not confined to the boundary
layers, but rather filling the whole gap between the disks.
This pattern received the name of negative spirals, since
they roll up to the center in the direction of the slower
disk and suggested that a free shear layer was
responsible for this mstability too, raising the 1ssue of a
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Fig. 1. Sketch of the flow in the meridian plane m the
counter-rotation flow (Moisy et al., 2003)

possible continuity with the observations of Lopez et al.
(2002). The reason for this new instability is that the
topology  of the counter-rotating flow drastically
changes at high enough rotation ratio, evolving
towards a two-cell meridian recirculation flow with a
stagnation circle on the slower disk (Fig. 1). The
centrifugal flow mduced by the faster disk recirculates
towards the center of the slower disk due to the lateral
end wall. This mward recirculation flow meets the outward
radial flow induced by the slower disk, leading to a
stagnation circle. The inward boundary layer on the
slower disk gets detached due to this stagnation circle,
leading to a free shear layer in the bulk of the flow. This
free shear layer may become unstable, leading to an
azimuthal modulation and giving rise to the above
mentioned funnel-like vortices (Lopez et al., 2002) or
negative spirals (Gauthier et al., 2002).

In the present study, we report new observations
of the mstability patterns in the counter-rotating flow
by numerical simulation of an incompressible viscous
fluid flow between two counter-rotating disks, where
the aspect ratio R/h = 7 and the Reynolds number
assoclated to the top disk 18 Re, =282 and the
Reynolds number associated to the bottom disk is
Re, = 51.8 (These parameters are selected to allow the
comparison between our results and those of Moisy
et al., 2003).
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MATHEMATICAL MODEL

We consider an incompressible viscous fluid flow
between two parallel rotating disks enclosed by a
cylindrical envelope attached to the upper disk. The upper
disk and the lateral endwall are in rotation with the same
angular velocity Q,. The bottom disk tums in the opposite
direction with the angular velocity Q, (Fig. 2).

The three-dimensional flow between two rotating
disks is modeled by the mass and impulsion conservation
equations, 1 the cylindrical coordinates according to the
3 directions radially, azimuthally and axially.

Equation of continuity:
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Equation of momentum mn the azimuthally direction:
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Equation of momentum in the axial direction:
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Initial condition:
AtT=0
u(r,8,z)=v(r,8,z)=w(r,8,z)=0 (5)

Boundary conditions: The boundary conditions of the
problem are expressed by:

Lo

Condition of the rotation of the disks:

Fig. 2: Set-up scheme

At z=0u=v=0,w=r1} (6)
At z=hu=v=0w=r1{, (7
Condition of the periodicity:
u(r, 0, zy=ur, 6, + 27, 2)
v(r, 0, 2)=v(r, 6, + 27, z) (&)
w(r, 0, z)=w(r, 0, + 2%, 2)

The dynamic condition on the cylinder axis:

2 2 2
adu o'v a&w (9)

The flow 1s characterized by three dimensionless numbers:

¢ The Reynolds number based on the top disk velocity
Re, = Qh'#v.

The Rossby number G = /€,

The aspect ratio I' = R/h.

Another parameter related to the first is the Reynolds
number based on the bottom disk velocity:

Re, =(3,h’/v =G Re,

In our study, we fixed the aspect ratio I' = 7, the
Reynolds number based on the top disk velocity Re, = 282
(Moisy et al., 2003) and the Rossby number G = -0.184.
The variation of this last 1s related to the varation of the
Reynolds number based on the bottom disk angular
velocity Re,.

NUMERICAL METHODS

To solve the system of non linear differential
equations, we use the finite volume method described in
Patankar (1980) in second order in space and time.
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Fig. 3: Typical control volume

Spatial discretization: The physical field is transformed
into a field of calculation by its division in a certain
mumber of small cylindrical volumes. In our study, we
divide the physical field into 64*32*32 fimished volumes.
This choice 1s limited by our means of calculations.
Dimensions of a typical finished volume are:

Arp ,Aepet Azp

The Fig. 3 represents an example of cylindrical
finished volume. The values of the physical quantities are
stored in the typical points of finished volumes; however,
the components of the field velocity are stored m the
faces of volumes of control.

Discretization of the differential equations
Discretization of the temporal terms: The denivatives
temporal of the equations of Navier-Stocks are discretized
as specified by the following equation:
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Discretization of the convectifs and the non-linear terms:
The convectifs terms and the non-linear terms will be
approached by the discretization of Adam-Bashforth:

G R 207 — 67 + o(AT) (1)

Discretization of the other terms: The diffusive terms
and the gradients of pressure will be evaluated implicitly
at time T = AT.

Space discretization: The centered differences scheme is
used for the space discretization with truncation of order

of (Ar),, (AB) et (Az)".

The discretization of equations: The discretized

equations of the components of velocity and of pressure

field have the following standard form:
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Where: ¢ is the dependant variable
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Are the coefficients and S is the source term.

The algorithm SIMPLER is used for the
sequential solutions of the systems of equations of
discretization.

RESULTS AND DISCUSSION

In this research, we consider the aspect ratio I' = 7
and the Reynolds number associated to the top disk
Re, = 282 and the Reynolds number associated to the
bottom disk Re, = 51.8 and the two disks turns in opposite
directions.

The Fig. 4 represents contours of the three
components velocity at different heights at T = 430. The
general observation of this field mdicates that the flow 1s
not axisymmetric. At mi-height, we notice a pentagonal
pattern; this pattern consists of a circular chain of five
vortices whose ends rolled up mn spirals by advection in
the boundary layers. We call these spirals negative spirals
(Moisy et al., 2003).

On the Fig. 5, the axial vorticity field at mid-height is
represented, we find an important concentration of
vorticity separating an inner and outer part; this
pentagonal pattern consists on five spirals arms in
the corner, therefore this instability have a wave number
m=5.

According to the Fig. 6, we find that the meridian
flow consists of two cells of arculation, the right cell
15 generated by the rotation of the top disk, 1t
tums clockwise while the left cell which 1s due to the
rotation of the bottom disk and tums in the anti-
clockwise direction. Between these two cells there 1s a
shear layer. The appearance of the vortices in the
same radial position confirms that an instability of the
shear layer is responsible for the appearance of the
vortices.

On the Fig. 7, we represent the axial vorticity at the
mid- height and the azimuthally vorticity on the bottom
disk according to the radial coordinate. On the bottom
disk, axial velocity component 1s null and by consequence
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Fig. 4: Contours of the velocity field components at
T =430

When it cancelled it indicates an axial gradient
null of the radial velocity components. According to the
Fig. 7 and it is almeost the same position where the
axial vorticity € is maximal. Thus, the radial position
where the azimuthally vorticity is null on the bottom
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Fig. 7. The azimuthally vorticity on the bottom disk and
the axial vorticity at the mid- height

disc corresponds to the ray of the stagnation and the
position where the axial vorticity reaches its maximum
value is the ray of the shear layer. Thus, the ray of
stagnation is coincided with the ray of the shear layer:
R,=R,=295.

The evolution of the flow in time is represented
by the fields of the axial vorticity at v = 10, 30, 40, 45, 55,
65, 70, 80, 90 on the Fig. 8. Atthe beginning, we find that
the flow is axisymmetric until T = 30, itis about a crown
of strong vorticity in the center which it has a decreasing
ray by increasing time, the value of the vorticity of
this area1s Q, = 4.34 at t=10and Q, = 3.50 at t = 30. From
T = 40, the flow becomes asymmetrical and the central area
of strong vorticity starts to have an azimuthally
modulations. The Fig. 8 c-g show the stages of the
formation of the pentagonal pattern, therefore: The
shear layer starts to become unstable from t = 40. From
T = 80, the pattern is achieved and the flow remains with
this structure for v =90 and © = 95.

Figure 9 represents the temporal evolution of the
radial velocity U for Re,= 282 and Re,= 51.8. The code
computer is carried out for Re, = 282 and G = -0.184 with a
step of the time At = 107, from 0 until © = 230; then, we
decrease the step with At = 2.5%10" from © = 230 until
1 =300, then we decrease the step again with At 2.5%10*
from ©= 300 until © = 430, that is to say 540 hin real time of
calculation. According to the Fig. 10, witch represents
the temporal evolution of the two points P,, P, (the
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coorditiates of poirds it Tablel), the flow is transitory and
welocities are oscillatory. To make sure that thds instability
has not moumerical origing when we reduced the step of
tittes, we found that the amplitudes of the distwbances
increase further in the points of test and by conseguence
thi s instakility is ploysical.

In order to obtain the spectnaum of energy of the
oscillations, we use the fast transform of Fower
(Williatm ef al, 1287 of armamber of powers 2 of walues of
the temporal waration of the horizorntal comporent
velocity, In this case we use his decimal logarithun. ¥We
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Fig 10: Tempora spectrnom of energy corresponding to
the point F1

take M = 2" for At = 2.5%107 Fig 10 illustrates the
variation of the energy of the disturbanices according to
their frequencies at the point P, the dominant frequency
F=00457%.

CONCLUSION

Itithis researchy we shady the three dimensional floer
between twro rotating disks in courter rotating disks
where the Reynolds mamber associated to the top disk is
equal to 282 and the Reynolds manber associated to the
bottoen diskisequal to51.8.

The problem ismodeled by the equations of Havier-
Stocks  and  contirmity  developed  in cylindricad
coordinates. These differential equations are solved by
the munerical method of finite wolwres in second order in
space and time. The dgoritten 3IMPLER 15 used for the
sequential solution of the systems of equations of
discretizati o

This research allowed the deseription of a pentagonal
pattern in the center of the cylindrical encdoswe, wlich
indicates the formation of five spiral switls which are
cotriected by five negative girals A cirevlar chain of five
quasi-wvertical sarirls, whose ends are rolled up in spirds
by adwection in the bowndaty layer s The secondaty flow
inthe plan (B, Z) comprises bro cells of recitowd aticr, due
to the competition of the centrifigal effects associated to
the rotations of the disks This competition bebreen the
boundatry layer s certrifingal and centripetal on the bottom
digk results a circle of stagnati on where radial welocity is
cancelled, causing the detachm ent of certripetal lagrer and
giving rise to a argndar shear layer between disks, the
instability of the shear layer gives place to a pentagonal
pattertiwith a wavernanber m =5, The spectrd analysis of
a radial compotient velocity shows that the dominant
frequencyisF = 004575,
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