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The Effect of an Attached Mass on an Euler-Bernoulli Beam
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Abstract: The effect of an attached mass on an Euler-Bemoulli beam was considered to determine the frequency
and the deflection of the beam. The governing equation was solved by analytical cum numerical method using
separation of variables and mathematical program subject to the boundary conditions to arrived at a
transcendental equation to obtain the roots of the equation. The case of 3 modes were considered and shown
graphically, it was also discovered that the natural frequency reduced when the mass 13 attached and mcreased

when the beam 1s free.
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INTRODUCTION

The beam is one of the fundamental elements of
engineering structures which is used in various structural
application and machine designs which has been of
mterest to many researchers. Timoshenko (1992) worked
on practical analytical techniques to determine the
response of the beams with various boundary conditions.
Steel (1967) worked on a finite beam with a moving load
and discovered that load has damping effect on the beam.
Stannistic and Hardin (1969) present a solution for simple
supported beam which was interesting but not very easy
to apply to different boundary conditions. Recently Scott
Whitney (1999) studies the vibrations of cantilever beams
and determines the frequency and the deflection of the
beam; mn the aforementioned they only considered the
classical ends. In this study the non-classical ends and
effect of an attached mass 15 comsidered which an
extension 1s of the work of Scott Whitney.

DEFLECTION OF THE BEAM

Assume that the free end of a Bemoulli beam is
subjected to a point load the beam will deflect into a
curve. If the load is large the deflection y(x) will be greater.
Suppose that the beam 1s subjected to a small deflection
that is it is linearly elastic region and has a uniform cross
section by Gere and Tunoshenko (1997). The following
differential equation of the motion of the beam can be
integrated analytical or solved nmumerically to obtain the
deflection. Thus the deflection 1s expressed due to the
bending moment as

FY_-M_
d’x  EI

This equation 13 called the curvature where EI 15 the
flexural rigidity, E is the modulus of elastic of the beam
and T is the moment of inertia.

The bending moment can also be related to the shear
for v and the lateral load P on the beam, therefore

2
M = EI ‘;ZY (1a)
X
3
v 4 (1b)
dXE
4
P=—EI ixf (lc)

For a particular load the distributed load, shear force
and bending moment are given as:

P(x)=0, v(x)=P, M(x)—PL{l%] (2a)

Thus (1a) can be written

dy PL %’
dy _ _ P X (2b)
o Moo= x-x]

%

Hence
vio= | Waem L [j (20)

At free end of the beam the displacement 15
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Y(L):—z—; (2d)

THE VIBRATIONAL EQUATION OF THE BEAM

The governing equation of the beam is given by the
differential equation
d*Y(x,t d*Y(x,t
a0t EYGey)
dx dt

= P(xt) 3)

Subject to the following boundary conditions

Y(0.t)=0, Y'(0.t)=0, Y"(L,t).=
—o'mY'(L,t), Y'(L.t)=0"jY(L.t)

4

When a force 1s removed from a displaced beam, the
beam will return to us original shape. However, the beam
will vibrate around the initial location due to the vertical
of the beam. Suppose the inertia, the modulus of elasticity
and the cross-sectional area A are constant along the
length of the beam the equation of vibration now becomes

4 2
Ox ot

Where m is the mass per unit length. This (Atkins, 1994)
can be solved analytically by method of separation of
variables by assume a solution of the form

Y(X,t)=X(x T(t)) (6)

By substituting Eq. 6 mnto 5, two differences equating
were obtained and they are written as

X)) -0 e
° Tgt) W2 T(t)=0 (70)
where B! :%?n (7e)

Subject to the boundary conditions and the imitial
conductions,

x(0)=x'(0)=0, x"(L}=
-w’m, x(L}, x"(L)=w’j x(L) (7d)

T(0)=T(0)=0

On solving Egq. 5a gives a solution as a linear
combination of trigonometric equations by Volt era and
Zachmangolou (1965).

X(x) = a,[cos(B,x )+ cosh{p,x )]+
a,| cos(B,x ) cosh(p,x) | (8)
+a,| sin(B,x) +sin(B,x) |+ a, | sin(B,x) - sinh(p,x) |

Substitute (7¢) m (8) reduce the equation to

X, (x)=2C,
[1+ cos(B,L)cosh(B,L)= JiP.3 n man]
m m
sin{p,L jcosh(p,L}+ (9)
. ) =0
[%MJCOS(BnL)SiH(BnL) +Bn47-]12ml
m m m

(1fcos(BnL)cosh(BnL))

Since 2C, 18 an arbitrary value and cannot be zero. Hence
(9) can be written as

ml} mL

1+ cos(B,Ljcosh(B,L}- [jl (BnL)3 Lo (BnL)J

sin{p,L jcosh(p,L}+ {mlr(flle) _ L(fi%) } 10)

cos(pB,L)sin{p,L)+

. L 4
%(17005([3@)00%(6@)):0
Equation 10 1s called the transcendental equation

which 15 then solved to obtain the roots of the equation.
Solve Eq. 7b to obtain

Y, (x,1) =X, (x)[ A, cos W,t+B, sin(W,t)] (1

A, depends on the mnitial position at time t = 0 and [,
depends on mitial velocity. In this case 1t is assumed that
the beam starts its vibration when displaced at rest thus
B, =0, therefore

A, = 2] v(xt=0)%, (x)ox (12)

By substituting the imtial displacement obtained
earlier into Eq. 12 A can be written as
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-2p
(2sin(B,L)e"" + e 1)+

S

3LPIEI
G ( 2cos{p,L)ef" — o=t — 1)

3(eZB“L - 1) +G(B,L) (ezﬁnL _ 1) _

RESULTS AND DISCUSSION

Typical values of A and the frequency for the beams
are shown in Table 1 and 2, it was discovered from
Table 1 that the frequency of the beam increases when the

sin(p, L) mass is not attached and from Table 2 the frequency of
" G(B L)3 (ezrﬁ,.L 4 1) the beam decreases when the mass is attached, also
! Fig. 1-3 show the deflection of the beam caused by each
3-3¢™ 4+ G(B,L)’ (eZB“L + 1) + (13) modes when the mass was attached. As the time
+cos(B,L) G(p L)3 progresses, each modes vibrate around the zero deflection
3G(62EHL+1)+ , (GZBHL_l) 7  Displacement against length atn=1
3 i K matt
~2(B,L) o™ -3Ge™" I;&igg)
—~— Y2000
- - = Y(x,2500)
iiBs —e— Y(x,3000)
WhereG = =52 '
m

By assigming the numerical values as
1 =05m=704 EI=215280,P=1000N,L=10m

Two cases were considered and were shown from the
Table 1.

Case I: The root of the equation, the values of A,
and the natural frequency when the load was
attached with mass were obtan in the form of the

-15- Length
Fig. 1: Vibration of 1st characteristics mode

20 Displacement against length atn=2

Table 1. 101 ——v(x0)

- —a— ¥(%,500)
Case IT: The root of the equation, the values of A, and the § 3 : :E:llsog)))
natural frequency were obtamn i the form of the Table 2 290 1 —e— ¥(x,2000)
when there 15 no attached mass that 1s when j, = 0 and g 5- 15-—»{:;, 2500)
m, = 0. —— v(x,3000)

Table 1: The frequency of the beam increases when the mass is not attached

-10

N B.L A, (m) w, (Hz) 157

1 1.071617603 -2.10041294%10! 2.025249665

2 3.981842254 -1.757877318%10° 27.72576989 -20-

3 7.099751359 -5.284033829%10° 88.14583412

4 10.22676265 -8.15088089%10" 182.8908027 . . . L

5 13.35565353 -9.50469751*#10'% 311.9218522 Fig. 2: Vibration of second characteristics mode
6 16.48297035 -0.28558467%10"7 4751015722

7 19.60690008 -8.08488771%107° 672.253933 N .

8 22.72691656 47566190941 (72 903.1547085 _ Displacement against length atn =3

9 2583801313 64422763341 0% 1165.519106 - Y, 0) 4 Y(51000) ~+ Y(x 2000) - Y(x, 3000)
10 2894402446 -3.35026606*10°° 1464.985566 61 + Y(500) + Yex, 1500) o Y(x, 2500)

11 32.03951117 -2.17373828%10°° 1795.094332

Table 2: The frequency of the beam decreases when the mass is attached

N B.L A, (m) w, (Hz)
1 1.875104062 0.01592730682 329.70
2 4.694091133 -1.0088990438 2066.20
3 T.854757438 0.00019177692 5785.50
4 10.99554073 -0.00006998826 11337.20
5 14.1371688832 0.00003288057 18741.30
6 17.2787599953 -0.00001800889%96 27996.20
7 204203552251 0.00001021030 39101.61 -6
8 23.5619449001 -0.0000071100022 52058.37
9 26.70353775602 0.0000044887779 66866.07
10 29.8451302105 -0.000003349467 83524.74

1253

Fig. 3: Vibrations of third characteristic mode
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line with the frequency listed in Table 1 and 2, Fig. 1, 2
and 3 shows the vibration for the first three modes the
higher modes act simailarly.
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