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Abstract: This study deals with modeling, the estimation the parameters and the controlling the biclogical
process used for the waste water treatment. The mathematical models describing such process are presented
n the form of distributed parameters system. The numerical resolution of such system requires the use of the

approximation methods. Once the model 13 established, the concepts of the approach presented m this resaerch
aim at modeling the considered process, studying of model identifiability, estimating and controlling the

process with neural networks.
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INTRODUCTION

In this study we study dynamic modeling, the
analysis and the control of bioprocesses tat use a fixed
bed reactor (Fig. 1). This type of engines is used more and
more in industrial practices. The fundamental problem,
which appears in the control of such process, 1s the lack
of measurements on line, which is always the weak point
of controlling in real time of purification processes. In
order to perform controlling the process, thus it is
necessary to work out of a simulation model useful m real
time in order to predict the evolution of the various
concentrations.
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Fig. 1: Diagram of fixed bed reactor

The purpose of denitrification is reducing the nitrates
N(O’-in gas nitrogen N* with formaticn of an intermediate
compound, the mtrites NO2- (Babary et al., 1996).
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Denitrification is an anaerobic reaction (reaction took
place i a medum deprived of oxygen) catalysed by
micro-orgamsms (of the bacteria whose source of energy
is organic carbon).

Our research will be organized in four parts:

*  Modeling the biotechnological process (biofiltre).

+  Analyzing and identifying of the kinetic parameters
and other parameters...

»  Estimating and adaptive control of neural networks
biotechnological process.

+  Results of simulations.

THE SYSTEM DYNAMICAL MODEL

The denitrification process, which is the subject of
our study, is an engine of length L. with fixed granular bed
and of ascending type for the liquid. In this type, the
micro-orgamisms are fixed on balls of gamishing, where
the substrates can circulate freely.

The mathematical model of the system is described
by four (non-linear, nonstationary and of hyperbolic
type). partial derivative equations.
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for O<z«1
with the following boundary conditions:

* 5(z=0,0) =50 forl=13
o 5,(z=0,1)=0,x(z=0,1)=0
and the following initial conditions:
o 5(z,t=0)=s,(z) for|=1,23.
o xX(z,t=0)=x/(2)

In the precedent equations, z, s, (z.t), s,(zt), s,(zt),
x(z,0), ;1w (L), 85, (O represent the variable of space (m),
the respective concentrations of mitrate, nitrite, carbomn,
biomass (g m ), the nitrate and carbon concentrations at
the entry of the reactor (g m ), F A k; k;, and ¢ rate of
feed at the entry of the engine (m 3 /h), the section of the
biofiltre (m’ ) yield coefficients, porosity, i, specific rates
of growth on nitrate and the nitrite (g m~%/h).

The specific growth rate expression (the Monod
models') 1s as follows:

- 5 S5 (3)
- . . .
w5

1 mi

fori=1,2

Where 1, 15 the factor of correction for the growth in
anaerobic mode; L. 13 the maximum specific growth rate
of the biomass; k. k.. k. are the of Michaelis-Menten
constants' associated, respectively with nitrate, nitrite and
carborn.

The model is
equations; the variables of state S and X of the system

described by partial derivative

don't depend only on tume t but alse on space z Itis a
system with distributed parameters.

methods
intended to transform the

There  are some (Dochain, 1994)
distributed parameters
system to mto localized parameters systems described

by an ordinary differential equations.

Method of orthogonal collocation: The method of
1997)
applied method to approximate a partial differential
equation system by an ordinary differential system. This

orthogonal collocation (Magnus, 15 widely

method requires the choice of a number N of internal
collocation points, their position z along the engine
and the functions of bases make it possible to rebuild
the approximated solution to the interpolation points
(Bastin and Dochain, 1990).

It 18 a question of finding starting from the choice of
basic functions 1(z) an approximate solution X (z t) in
the form:

M+l

x(t,2)=>"1,(2).x,(t) (4)

With:
N : Numbers of collocation points,

x(t) = x(z,t): value of vector X at the of collocation
pounts zi. This solution not checking exactly the Eq. 2, one
defines a residue R(x(zt)), the problem consists in
minimizing R(x(z,t)), which is translated in the shape of the
scalar product:

<REx(zt)w>=0 1=0]12, . N+

In Bastin and Dochain (1990), Sylvie (1996) a study
1s detailed on these problems. An approximate solution of
the system with the collocation method by taking the
interpolation polynomial of Lagrange like basic function
and the zeros of the Jacobi polynomial like collocation
pots and mterpolation (Villadasen and Michelsen, 15978).
If the collocation points are confused with the
interpolation  points, the method is known as of
orthogonal collocation.

In Villadasen and Michelsen (1972) z,j=1, ..., N,
the position of the collocation points 15 obtained by
checking relations of orthogonality, according to the
number N of collocation peoints and two parameters

aand .

Reduction of the model of denitrification: With the
application of the orthogonal collocation method, the
simplified system becomes:
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With the following initial conditions:

{51(2,0) =sl0 for1=1,2,3

%,(z,0) = x0

_ ° ° Sl1 SBi
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For the simulation runs the number of the collocation

points is chosen as N = 4 and the parameters ¢ =1, f =1
(Sylvie, 1996).

Denitrification process control: The adaptive control
problem 1s to keep the sum value, of the concentrations of
nitrate and of nitrite equal to its set point (yd) by
manipulating (the feeding velocity) u(t).

For that, we defines the output variable y(z,t)
such as (Marquardt, 1963):

=y(EZ= 2,1 = o5 T oy (6)

(¢, = 0.226 and ¢, = 0.304) are the coefficients of

conversion into equivalent mnitrite and mitrate
concentrations, respectively.
The dynamic equation of the state variable has to

control:

dyl — u aY(Za t)

+i{C,—¢C

dt & 0z g (e, =) 7
k-1 k, -1

MpXy =6
1 2

M Xo

The variable of control is u(t): The variable of control may
be feeding velocity of the fluid flow has through the
engine u(t) (Sylvie, 1996, Haag and Queinnec, 2001).

The principle of the control law is to associate the
regulation problem of the variable y, at dynamics of the
closed loop system represented by the following linear
first-order

dy,
dt

=My;—y,)avec L= 0 (8)

yd is the desired value of y,.
By combination of the Eq. 7 with the 8, it comes:

k-1. . k,-1. .
MYy (e, e ) X o (i, X
o€ 0,8
u(t)= v
9
With w:lM

€ oz Z=zp

Estimate of the concentration of biomass: That £, the
vector of the measurable state variables:

s, (7,1)
8, (z1)
And £, the vector of the non-measurable state

variables: £, =x, (z, 1)
Moreover,

Tw -y o
K, =%
b=
ey te

0L1 (03

2

and K, =1 1]

There 1s a transformation of state:

E=AE +E that AK, +K,=0 ifdet(Ky)*0

o,k -1
(k1 - 1Xk2 - 2)

Sotl(k2 -l+a, .
k,-2

A =[aq —al]—{
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This transformation leads to an observation
dynamic equation of £ , independent as x,:

ag(az’[’ ! =k bz +as(zt) +as8,(zt)

u a, s, (Z’t)+a2 0s,(z,1) (10)
€ oz &z

%.(z.0=8(z ) —ags, (z,)—as, (z,1) (11)

Estimate of the growth kinetics: For our model
¢, = ¢, = 1 since the nitrite and nitrate concentrations are
expressed in equivalent nitrogenizes.

Then the control law 13 written:

k-1, .
My - v —H, X, (12)
_ e
u(t)=
W

In this case, we will carry out only the estimate of the
specific growth rate relating to the
demitrification. For that, we write p2; in the followmg
form:

reaction of

Mo = P a1 (13)

B,. is unknown parameter which is estimated by the
recursive least-squares algorithm at forgetting factor:
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Neural inverse model control: The purpose of the neural
networks hereafter is to provide at every moment the
control merement Au(t) = u(t) - u(t-1) (Fig. 2). The future
variations of the output Ay(t+1) will make it possible to
carry out a one step ahead prediction (Mokhtari and
Marie, 1998, Ray, 1981).

The traimng of the network 1s carried out with Matlab
neural NetToolbox; it's consists in modifying, with each
step of training, the weights and skews in order to

< Controller Process ‘:L’

Fig. 2: Functional scheme of the control strategy

Av{t ] ) !
Av(t))——
x(t)——]
x{t-1)—————P
uft-1)———————»
Auft-1)——————p]

Au(x)

Fig. 3: The neural network controller

minimize the sum of the errors squares at outlet. The
retropropagation method 1s based on the techmique of the
gradient. The weights and skews are imtialized with
random values. Of uniform distribution -0.5 and 0.5, the
adaptation gain is selected equal to 0.8. We chose neural
network architecture, in the sense of feedfoward data
processing, as follows:

Seven cells in the input layer that distributes the
input data to the processors in the next layer.

Six cells mn the ludden layer where the nonlinear
behavior comes from and 1 cell m the output layer that
transmits the response of the network to real world Fig. 3.
(Mokhtari and Marir, 1998).

RESULTS OF DIGITAL SIMULATIONS

Simulations are carried out for the 1mtial conditions

following:

v, =1,.,N+1

o sz t=0)= 16.93 g[N]/m 3
o sz t=0)= 0g[N)m 3

o sz t=0)= 101.5g[N]/m 3
o x(zit=0)= 525 g[N]/m 3

The rate of flow of the fluid 1s equal to:

u = 9mh’

Yh, = 0.51, Yh,= 042, gy = 0.35h ™, py, =027 h-1.
K, = 1.5g[N}ym’,K,=1g[N}m ",

K, = 40g[N}Jm’.

ng = 0.8, &=052 %, =675 g[DCOJ’,

A= 4,0=098 v0=10

Figure 4 shows that the output process
(concentration in substrate of the effluent) reached the set

1128



J. Eng. Applied Sci.,

point at the end of a few days at the price of a light
oscillation in the transitional stage (Fig. 5). As we
considered in the calibration, it is noticed that the
output cascade converges nevertheless towards the
instruction.

This proves that the action of integration of the error
at the entry of the regulator is actually carried out thanks.
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Fig. 4:Evolution of output Y, and control evolution
comproson

Evolutign of subtract concentration

o=
55
£R
50,
0+ r . y r T ; J
0 2 0 12 14
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Fig. 5: Evolution of the substrate input
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Evolution of error

Fig. 6: Evolution of error
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to the estimator of |1, intended to gauge the outputs of the
cascade (Fig. 6).

The estimated values of the biomass concentration
X, using the asymptotic observer converges quickly,
towards the effective concentrations in the effluent as
shown in Fig. 7. The results of simulation are satisfactory;
they show that the regulator functions well and present of
good performances from the point of view of the
regulation.

CONCLUSION

In this research, the matter flows and transforms in
the sewer collector were modeled by a piston engine in
which the substrate is degraded by the micro-organisms
that multiply. We, obtain in any rigour, a system with
hyperbolic distributed parameters governs by a system of
differential equations to the partial derivative. These
stages of modeling, analysis and identification were of
primary importance for the development of estimate
algorithms. The objective of our study being to regulate
the sum of the substrate concentrations to a standard
fixes at exit of the biofiltre while acting on the fluid flow
rate. As the kinetic term of the process is related to the
variation of the operating conditions, an algorithm of
adaptive control was adopted.

We studied the possibility of considering an
improvement of the control process structure by
implementing a control of the bioreactor by neural
networks.

We showed that it is possible to establish a controller
by neural inverse model in the process to ensure the
waste water treatment in the biofiltre.

The simulations carried out thanks to data (I.N.S.A.
of Toulouse) show that the adopted regulator presents of
the satisfactory performances.

Evolution of asymplotic observer of the Xa biomass

S 600 === '
g 8 4007} p2max: Estimated
% ~ 200_' u2max: Real
% E 0]
o &D -200 T T T T T 1
0 5 10 5 (Day) 0 25 30
2
= 0.17 Evolution of p2max o
= 88?- p2max: Estimated
§ 0.04] p2max: Real
Q 0.02 |
0 1 1 T 1 1 1
0 5 10 15 20 25 30
t(Day)

Fig. 7: Evolution of estimated biomass and estimate ,,,,
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