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Abstract: This study proposes a new methodology for Error diffused bi-level image compression algorithm. The
existing IBIG shows relatively low performance in compressing error-diffused bi-level images. The new method
suggests Bayes theorem for showing high performance in error diffused bi-level image compression. By doing
so we can improve the resolution and compression factor of the error diffused bi-level images. This method is
quite fruitful when we use error diffused bi-level images in the file.
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INTRODUCTION

Advances in digital techmology and mcreasing uses
of multimedia applications. Tmage compression requires
the higher performance, to address the needs and
requiremment of multmedia and Intemet applications
(Konda et al, 2002). Thus, many researchers have
developed data compression technologies in order to
use media efficiently. Among the
various compression methods, Swanson and Twefik
(1996) and Gurcan ef al. (1999) developed wavelet-based
compression algorithms for bi-level images. Wavelet
decomposition generally reduces total number of black or
white dots 1 simple images (Panda et af., 2000). However,
wavelet-based algorithms do not work well for halftone
images because they have many transitions between
black and white dots. Langdon used an arithmetic coding
for compression of bi-level images (Langdon and
Rissanen, 1981a). They combined a “context™ algorithm
(Langdon and Rissanen, 1981b) and an arithmetic-coding
algorithm. Many researchers have used the context
algorithm for modeling image data and the arithmetic
coding for compression (Nguyen and Wemricher, 1996;
Reavy and Boncelet, 1997). The current international
standard, the JToint Bi-level Image BExperts Group (TBIG), is
a representative of a bi-level image compression algorithm
(Darunel, 2000). But 1t shows relatively low performance in
compressing error-diffused halftone images. The
proposed methodology is based on Bayes theorem. Here
the proposed coding procedure compresses the error
diffused bi-level image mn 2 steps: First, it groups 2x2 dots
(4 dots) in to a cell and using Bayesian probability
estimator it represents the cell using two values such as
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S-value (sum of the dots) and C-value (binary
representation of the cell). Second, using S-value and C-
value it encode and decode the error diffused images with
good performance. The quality of images reconstructed
from the proposed method is better than one
reconstructed from layer 1 of the compression coding of
the TBIG.

BAYES THEOREM

The general outlook of Bayesian probability,
promoted by Laplace and several later authors, has been
that the laws of probability apply equally to propositions
of all kinds. Advocates of logical (or objective epistemic)
probability, hope to codify techniques that would enable
any two persons having the same information relevant to
the truth of an uncertain proposition to independently
calculate the same probability (Habson, 2003). Except for
simple cases the methods proposed are controversial.
Using the total probability, if B, B, ...... ... B, are a set of
mutually exclusive and exhaustive set of events, then,

P(A)= ZN: P(A/B ) P(B,) (1)
therefore,
PBA)= 7 ———— AE)P (A/B) (2)
> P(A/B,)P(B,)

Bayes theorem 15 called as the rule of mverse

probability.
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PROGRESSIVE BAYESIAN COMPRESSION
ALGORITHM

The proposed algorithm 1s described by two
equations, where one is for coding and other is for
probability The progressive Bayesian
compression method has the following steps:

estimation.

Tt groups 2x2 dots in to a cell.

Each cell is represented by two values such as S-
value and C-Value.

The C-value 1s binary representation of the dots in
the cell, the C-value of t* cell as x, represented as
follows;

%, = dy(0)d,()d,(O)d.(t), Where d(t) 1s the 1™ dot value
in the t* cell, which is a bi-level value, O or 1. C-value
18 an element of the set C={0000,0001....1111 ), whose
element 1s a four-digit binary number.

The representation of a cell value is S-value, which is
sum of dots in the cell, where the letter “S” is the
mutial for “sum”. We denote S-value by | as follows

lixt) = Zf d.(t) (3

S-value is an element of the set S = {0,1,2,3,4).Tt can
be thought of as a smooth filtered value of the cell
¢ The ideal code length of a symbol stream with length
T can be calculated by the following equation:

L(x,)=- ilog (p(x.) )

Where x — is the symbol stream with length T to be
encoded; L{x) — is the total code length to represent
the symbol stream x; p(x,) — 1s the probability mass
function of the t* symbal x, in the symbol stream x and
the base of log is 2.

*  The exact probabilities of x , may not be known. So,
the exact probabilities of x, and its code length should
be estimated as follows;

£ = -3 log (Bx ) (5)

Where pix,) — is the estimated pmf of x, that is
estimated from the previous symbols before x, in the
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stream. If we use Bayes’ theorem, then finally we get the
total code length equation is as follows:

L(x) = [-3 log PC] + [ log p(x,/C )] (6)

Equation 6 shows that the total code length of a
symbol stream 15 equal to the sum of two terms: the first
term represents the code length of-value and the second
term represents the code length of-value with the given-
value. Therefore, the encoding process can be divided
nto two passes:

In order to estimate the probability distribution of
px,),we use a Bayesian estimator in the proposed
algorithm. In addition, we can exploit the conditional
probability with the S-value of neighbor cells. We
estimate the probability using the following equation:

ch(s) (k) +1

p(xECKICX(s)) = i
Z N (N, +1

9

Where n_,(k) = denotes how many times the symbel
1%, such that 1(x,) = k occurred so far with a given

The conditional probability is estimated and updated
from the sequence of cells as follows;

N g 3+ 1
Z Ny (L+ N(C,)

(&)

pix, =hl|x, € . CX(d, 1) =

Where n_; (h) = denotes how many conditional
events (x, = h, when x,€C,) occurred so far with the context
CX(d.]) ; N(Ck ) — 1s the number of elements in C, In (8),
the imitial probability was set as an uniform distribution of
1/N(C,) for coding of the first symbol of each case. With
these estimated probabilities, we use an proposed coding
algorithm to compress bi-level images.

ENCODER AND DECODER BASED ON PROPOSED
ALGORITHM

Encoder: Figure la shows the block diagram of the
encoder. The encoder scans an image twice to encode it
by using the two-pass method. First, the S-value of cell is
encoded without information loss. So, that 1s the number
of block dots and white dots are preserved mn the first
pass. However, the information about the exact positions
of dots in a cell is lost. This is the reason why we named
the first pass near-lossless compression. The block of the
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Fig 1b: Block diagram of the proposed decoder

“Make S-value “in Fig. 1b rearranges the mmage and
generates S-value. The probability of S-value is estimated
in the block of the “Model for S-value”. After a cell is
encoded, the probability 1s updated by the encoded cell,
so that it can be updated at the decoder in the same way
as the encoder. The S-value and its probability are sent to
the entropy encoder block.

In a second pass, the C-value 1s encoded using the S-
value that 1s encoded in the first pass and the C-value
context. The probability of the corresponding C-value is
estimated in the block of the “Model for C-value “. The
context for theC-value must be causal like the S-value
context.

Decoder: The Fig. 1b shows the block diagram of the
proposed decoder. All procedures except the S-value
frame buffer are exactly the reverse of the encoding
procedure. When the first pass is completed, we can know
only the number of dots in a cell, not the exact location of
dots.
predetermined templates when an S-value is determined.

However, if we use only one of such templates to

Therefore, we can reconstruct images using

reconstruct the image, images suffer from artifacts caused
by the granularity or the periodicity. This reduces the
advantage of the error diffusion algorithm. To reduce

these artifacts, we made a table for the arrangement. From
error-diffused mmages, we investigated the patterns using
256 (=2%) C-value context. There are 5 S-value for each
context. Because there 1s only one pattern m the case of
the zero or 4 S-value of 1, 2 and 3. For each value with a
specified context, we counted how many times each
pattern occurred. With those counts, we made a table of
the most probable patterns for each S-value. We
reconstructed the exact image using the table after
decoding pass. In the second decoding pass, we
reconstructed the exact unage using the C-value with the
information decoded in the first pass. The second pass 15
a kind of refinement step, that 13, the exact location of dots
i every cell is determined.

MATERIALS AND METHODS

The proposed algorithm was 1mplemented in
MATLAB 6.0 and tested on Intel Pentium 4 with 1 GB
RAM, running windows 2000.

The pseudo code for the proposed algorithm is as
follows:

»  Imtialization
»  Read the input image 1n the variable a
a = mread ('rice.tif');
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Convert it into a black and white image
Z=im2bw(a);

*  Adding noise with the density of 0.05 to theimage Z
and store it in a variable b.

b = imnoize (Z,salt and pepper*,0.05);

»  Findthe probability of 50...54 (S-value)
forI=1: 255; forj=1:255;
C(i,j)=[b(,j)+bd, j+1)+b(i+1, j)+

b(i+l, j+1) ];
if(Cijy==0)
D, j)=0;p=ptl;
elze if (Ci,j)==1)
D{i,j)=1110; q= qt4;

continue; end

»  Total number of bytes required for S-valueis
A= (prqtrtstt);

«  Findthe probability of d0...dl5 (C-value)
fori=1:255; forj=1:255;

¢=[b(i, )] w=[bl,j+1)];
x=[b(i+1,j)];y = [ bG+1, j+1)];
ifc==0andw==0andx= =0 andy ==0)
d=d+1;
ifc==0andw==0andx==0andy==1)
e=e+l;

continue; end

» Total number of bytes required for C-valueis
total = { DAE+F+G+H+AT+H+KA+L
+AMAN+O+PH+QHRASHTHUY;

* Calculate the S-Value compression ratio: (in first
pass)
a = no. of bytes required for input image
A = no. of bytes required for S-value
S-Value compression ratio is S = (a/A).

= Calculate the C-Value compression ratio: (in second
pass)
a = no. of bytes required for input image.
total = no. of bytes required for
C-value
C-Value compression ratio is
C = (a/ total);

In our experimental analysis, using this pszeudo
code, we tested 5 Bi-level images and displayed their
results.

Fig. 2: Reduced test images for printing. (a) Image no. 1,
{b) Image no. 2 and (c) Image no. 3. (d) Image no. 4,
{e) Image no. 5

RESULTS AND DISCUSSION

For the experiments, we generated 5§ bi-level images
ag shown in Fig. 2, whose sizes are 4768x6912 for no.1,
6912x4768& forno.2, 476 84011 forno.3,3200x1996 forno.4
and 3072x2304 for no.5.

Comparison of compression ratios: For the comparizon of
the compression ratios, we compressed the five test
images using the proposed algorithm and the JBIG. The
first layer JBIG is a lossy coding because we reduced the
dimension of the images. In addition, we encoded the
images with a sequential coding of the JBIG that
fully codes an image in a single rezolution layer without
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Table 1: W-8NR of the decompressed images from the Pass-1 of the
progressive coding of the JRIG and the proposed method

Image JBIG Propsed algorithm
1 9.95 17.78
2 10.66 17.88
3 18.07 25.36
4 13.32 24.09
5 14.58 22.64

Table 2: Comparison of compression ratios of both JBIG and proposed

algorithm
Proposed algorithm
JBIG with two Pass

Pass-1 Pass-2
Tmage Pass-1 Pass-2 Near lossless lossless
1 6.00 1.51 357 1.90
2 6.34 1.61 341 1.95
3 8.76 2.12 4.62 2.70
4 8.87 2.20 4.16 2.62
5 7.06 2.79 5.34 4.56

reference to any lower resolution images (CRPAIT, 1993).
When we compress bi-level image using the sequential
coding of the TBIG, it does not reduce the resolution of an
image and compresses the image with a template. Because
error-diffusedbi-level images are specially compressed
the
compression ratios from the sequential coding of the IBIG

and do not have low frequency graininess,

are higher than those from the progressive coding of the
IBIG. The compression ratio of each algorithm 1s shown
in Table 1. If we compress images using the sequential
coding of the TRIG, it is impossible to decompress them
progressively. To decode mmages progressively, we must
encode them with progressive coding of the IBIG or with
other algorithms such as the proposed algorithm. When
two progressive coding algorithms are applied to error-
diffused images, the proposed algorithm works better than
the progressive coding of the JBIG. In addition, the
compression ratios of the proposed algorithm are higher
than those of the sequential coding of the IBIG.

Comparison of the decompressed image quality: We
compressed the image with quality, when the images are
reconstructed such as the first pass of the proposed
method and the layer 1 of the progressive coding of the
IBIG. The compression ratios of the two methods are
different and they are not adjustable.

For the image quality comparison, we measured the
Weighted Signal to Noise Ratio (W-SNR) (Lin, 1993) that
15, the ratio of the average weighted signal power to the
average weighted noise power and it was given in
Table 2. We also briefly analyzed the computation
complexity of the proposed method in comparison
with the JBIG in Table 2. The computation complexity of
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the proposed method is longer than that of the TBIG (Lin,
1993) because of the two pass structure of the proposed
algorithm.

CONCLUSION

This algorithm  proposed bi-level 1mage
compression method with two passes. The sum value
(S-value) of the cell is encoded in the first pass and
the cell value (C-value) 13 encoded in the second pass.
The proposed method 1s designed on the basis of
Bayes theorem. When we compress the error-diffused
bi-level 1mages without nformation loss using two
passes of the proposed method, it is comparable to the
IBIG’s. The quality of images reconstructed from the
first pass of the proposed method is better than one

a

reconstructed from layer 1 of the progressive coding
of the IBIG.

As per the hiterature survey, if the compression ratio
1s lie between 4-5, then it represents lossless compression.
Hence here we have the maximum compression ratio 4.6,
so it becomes lossless compression
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