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Abstract: This study presents a disturbance observer based tracking control for robotic manipulators. The
tracking control problem is formulated as a disturbance rejection problem, with the mechanical nonlinearities,
unmodeled dynamics and external disturbances lumped into the disturbance term. The global stability of the
composite controller and observer is guaranteed, this result is based on Lyapunov theory. In simulation, the
tracking control of a two link mampulator 1s used as an example to verify the proposed algorithm, when the
Coulomb and Viscous friction 1s considered as an external disturbance.
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INTRODUCTION

During the last decade the class of rigid robot
systems has been the subject of intensive research in the
field of systems and control theory, particulary owing to
the inherent nenlinear nature of rigid robots. A large
variety of control methods for this class of systems have
been proposed. These control methods may be classified
according to the objective that is defined for the end-
effector of the robot One frequently encountered
objective in robot control is point-to-point control, also
known as regulation, although this objective is rather
restrictive. For this reason, the trajectory tracking or
motion control objective for robots has become
mereasingly popular, since it significantly extends the
application area of robots. A great variety of controllers,
referred to as model-based robot motion controllers, have
been developed. These controllers can roughly be
classified into two categories. The first category consists
of inverse dynamics or computed torque controllers
(Lhu et al., 1980; Lewis ef al., 1993) which achieve the
trajectory tracking objective by feedback linearization of
the nonlinear robot dynamics. The second category
consists of passivity based controllers (Desoer and
Vidyasagar, 1975; Paden and Panja, 1988) which reshape
the robot system’s mechanical energy in order to achieve
the tracking objective.

For the implementation of these control methods,
exact knowledge of the system dynamics of a robot is
required. In practice, there 1s always some parametric
uncertainty n the dynamic of a robot. As a natural
consequence, the robot control problem in the presence

of model uncertainties has been analyzed extensively.
There are basically two underlying philosophies to the
control of uncertain systems: The adaptive control
philosophy and the robust control philesophy. In the
adaptive approach, one designs a controller which
attemps to learn the uncertain parameters of the
particulary system and, if properly designed will
eventually be a best controller for the system 1n question,
a discussion of adaptive controllers in robotics may be
found in (Ortega and Spong, 1989). In the robust
approach, the controller has a fixed-structure which yields
acceptable performance for a given plant-uncertainty set,
a comprehensive survey of robust control theory is
available in (Dorato, 1987).

Many adaptive robot control scheme assume that the
structure of the mampulator dynamics 1s known and/or
the unknown parameters influence the system dynamics
in an affine manner (Kwon and Book, 1994). Tt has also be
demonstrated (Colbalugh et al., 1995) that these adaptive
controllers may lack robustness agamst unmodeled
dynamics, sensor noise and other disturbances.

The control problem for a nonlinear system under
disturbances has been developed and applied in
engineering over two decades. Nakao et al (1987)
proposed firstly the concept of disturbance obser ver
‘DO’ as compensating unknown disturbance. Chan (1995)
uses a DO in electronic component assembly, while
Ohishi and Ohde (1994) give an example of the use of a
DO 1n collision. Moreover, DO’s have been used in
robotic manipulators for force feedback and hybrid
position/force control where the DO works as a torque
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sensor (Murakami et al, 1993, Komada et al, 1993).
Furthermore, friction 15 a cammon phenomenon in
mechanical systems. One of the most promising methods
1s observer-based control, where a variable structure DO
has been proposed (Linand and Kuroe, 1995) and a
nonlimear observer for a special kind of friction, 1.e.,
Coulomb friction, has been proposed by Friedl and Park
(1992). Tt has been further modified and implemented on
robotic mampulators by Tafazoli ef al. (1998). However, a
specific model of friction has not been used in the DO
proposed by Chen et al. (2000) but the combination
between the observer and the controller has not been
made. In (Chen, 2004) a DO based control approach for
systems disturbances  has
proposed, but only semiglobal stability condition of the

nonlinear under been
composite controller-observer has been established.

In this study, we present a new disturbance observer
based tracking control design, where all the system
uncertainties and external disturbances are lumped mto
the disturbance term. Since the model uncertainty and
parameter varlations are considered as part of the
disturbance, exact model knowledge is not required. The
global stability condition of the composite nonlinear
controller and the nonlinear disturbance observer is
established, this result is based on Lyapunov theory.
Simulation results on two-link mampulator show the
asymptotic convergence of tracking error, when the
Coulomb and Viscous friction 15 considered as an
external disturbance.

DYNAMIC EQUATIONS OF ROBOT
MANIPULATORS

For the sake of simplicity, a two-link robotic
manipulator 1s considered in this paper. The main idea 1s
readily extended to the more general case. The nominal
dynamic equations of a two-link robotic manipulator can

be described by:

=M, (q)q+C, (4.4} g+ G, (q) )

Where g(t), 4(t), 4(t) eR" denote the link position,
velocity and acceleration vectors, respectively, the
subscript (+), denotes nominal functions, M, (g(t)) eR™
represents the link inertia matrix, C_(q(t),q(t)) e R™
represents centripetal-Coriolis matrix, G, (q(t)) €R™
represents the gravity effects and T () €R™ represents
the torque mput vector.

The dynamic equation of the true plant is assumed
to be

=M+ Ce) +G @+ wiga.) O

Where M(q) = M(q) + AM(q),
Clq.q)=C,{g.q)+ AC{q.q) » G(q) = G{q) + AG(g) are the
real system matrices. represents the disturbance
vector. w(q,q,t)e R® Therefore, the dynamic equation of
the true plant is

=M@+ C, ()t G+ dladt )

Where

d(0,4,4,t) = AM(Q)d + AC(q,4)q + AG(Q) + w(g.q,t) (4

The dynamic Eq. (3) has the following properties
(Berghuis, 1993).

P1: M,(q) 18 symetric and positive definite matrix, for all
geR".

P2: The inertia and centripetal-Coriolis matrices satisfy
the following skew-symetric matrix

XM, (q.q)-2C.(.q)) X =0 vXeR® &)

In this study, the following lemma are used

Lemma 1: (Lozano and Taoutaou, 2001). Consider the
stable linear system

e=Ae+Br (O]
If rel., then e€l,NLe and e-=0.

Proof: (Lozano and Tacutaou, 2001a).

Lemma 2: (Lozano and Taoutaou, 2001b). Consider the
continuous function f R -R% if f, fel.”, and fel.,,
thennlimf (t)=0-.

t—sto
In the following, we will introduce a tracking control
algorithm which 1s referred to as the disturbance observer
based tracking control and the global asymptotic stability
1s guaranteed.

DISTURBANCE OBSERVER BASED TRACKING
CONTROL

We propose the following control

=M, (Q)q, + C, (4.0) q,+G,, (@) + K,E(t) + d(q.q,G.t)
(7)
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cR* denote the
acceleration

Where qut), q,(t). q,(t) desired
position, velocity  and vectors,
respectively, E(t) = q,(t)-q(t) and K is positive definite

diagonal gain matrix.

Theorem: Given the two-lin robotic mampulator (3) with
the tracking controller (7) and the disturbance estimation
d(q,q.q,t) is obtained from:

z2=¢ G, + o q,+u'vE (8)
d=2-p(q.9) ©
If
S B (j, +2Xcos(q,)) q +PB (j, +Xeos(q,)] 4,

B (J, +Xcos(q,)} q +B j;d

(10)
*  The function p(q,q) n (9) 1s chosen as
* Kp - H + Inxn

Then LmE(t) — 0 and HmE,(t) > 0.
t—co t—s0

Where j,, j,, J; and X are inertial parameters, which
depend on the masses of the links, motors and tip load

and the lengths of the links, | — djag{u,, qu}’
w=diagy,, wl. o __ w  and (¥ are
By 1

positive constants.
-1 -1 -1 _
o =y KM, a:%(qf‘(t))’ E(t)=q,()—q(t)

E,(t) = d(q.q.4,t) - d(q,q,4,t) and L,€R,, is an identity
matrix.

Proof: Substituting (7) to (3), we obtain
M, E(t)+C.E()+K,E(t)=-E, (1) (11)

We define T —[ETET(F- Ed)T} and choose as a
Liapunov function candidate

V(y):%yTP y (12)
Where
M, 0 ©
P=|0 u+l p (13)
0 Hoou

and the vector F 1s to be determined.
Hence

V= %ETMnE +%ET(M+ I )E+ %ETM(Ff E,)

1 T 1 T
+E(F7Ed) |J.E+E(F7Ed) w(F-g,) a9

Since, in general, there 1s no prior information about
the denivative of the disturbance d, it 1s reasonable to
suppose that

-0 (15

Which implies that the disturbance varies slowly
relative to the obsever dynamics.

The time-denivative of (14), evaluated along (11, (15),
according to property (P.2) and choosing K, = p+ 1, we
obtain

szT(m_pﬁ)m(MpmawE)_

, (16)
E;:(MF'_Mawmg)
Choosing
pF— Ma+ uE = —¢F
MF—M& =-yE (17)

prpa+pE+ E=0

Where n and W are diagonal, positive definite
matrices and ¢ is symetric, positive definite matrix to be
determined.

Hence
F=6¢"E (18)
c;1:¢"E+cc E+p'yE (19)
Where , _ i(d{l(t)) .
dt
Therefore, we have
V=-E"(0") E-ETyE (20)

hence
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V=-E"'E-E"yE (21)

From (19), we note that the disturbance estimation is not
practical to implement, because, the acceleration signal
4 is not available in many robotic manipulators and
it 13 also difficult to construct the acceleration signal
from the velocity signal by differentiation due to
measurement noise.

For landing this problem, we define an auxiliary
variable vector.

z=d+ p(g.q) 22)

Where zeR’. The designed function vector p(d.4) is
to be determined.

Analysis of stability: The analysis of stability 15 in two

parts. In the first part we demonstrate that ymE(t) —0

and in the second part, we demonstrate that imE,(t) — 0 .
t—soo

Part 1: From (21), V 1s a negative semi-definite function,
this result 1s not sufficient to demonstrate the asymptotic
stability and we can conclude only the stability of the
system (E, E and (F-E,) are bounded). Therefore, the
lemma 2 is required to complete the proof of asymptotic
stability and 1t 1s sufficient to show that Eel”, to
conclude that imE(t) — 0.

EcL?, if there exists some constant, v, such that

2

vz [[Eco] dt (23)
0
We note that
ET$'E>0 (24)
From (21) and (24), we can write
%V(E(t),E(t),e(t)) <-ETyE (25)

Where e(t) = F(t)-E, (t).
Using theorem of Rayleigh-Ritz (Lozono and
Taoutaow, 2001b) (25) becomes

%V(E(t),E(t),e(t))S —y, [E? vE(eRr" (26)

where i, denotes the minimum eigenvalue of 'P.
Integrating the two membres of (26), we obtain

V(E (o), Efeo), (o)) @ 2
AV(EW.E(Det) <y, [[Enfa G7)

V(E(0), E(0},2(0))
hence
V(E(w0), E(o0),e(o0))— V(E(0),E(0),e(0))

@ (28)
<y, [[E@[ at

We note that V(E(),E(t),e(t)) is a positive definite
function, then

V(E(o0), E(®0).e(20)) = 0 (29)

From (28) and (29), we can conclude that
~V(E(0),E(0).e(0)) < —y, THE(t)”Z at (30)
hence
v= [|Ecof a 3D

Where  V(E(0),E(0),e(0)) . which implies that EeL",
'Y -

m

thenlimE(t) — 0.
t—seo

Part 2: Let the function p{q.q) in (22) be given by the
following Equation

p(4.4)=¢"q (32)
hence
M:¢*1q+a q (33)
dt
Where , — i(d)'l(t)) .
dt
Invoking (22) and (33) with (19) yields
_ 44 dp(g.9)
dt
= 07, + o g+ WWE (34)

From (11), we have
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q=0, + M]'C.E +M;'K,E + M]'E, (35)

From (13), (33), (34) and (35), we obtain
E,=d=(a-¢"M;'C, JE+(pw- "MK, ) (36)

E- ¢ 'M_'E,
Choosing
w=pd M (p I ) (37)
and
K,=p+l, (38)
We have
E,=TE,+®E (39)

Where T =-¢p ' Mn ', @ = (a-¢p ' M, . C)
From (37) and (38), we obtain

6" =py (ue1) M, (40)

and
[=—pTy K (41)
Since M, is symetric, positive definite matrix,
p = diag {pl, I } > qj:diag{lpl, _\p!}, K, =p+1, an.d
(u; ) are positive constants, then, it is clear that ¢~ is
symetric, positive definite matrix and I 1s a stable matrix.

Therefore, using lemma 1, it is sufficient to show that
Ec L, to conclude that%jigEd(t) 0.

; n if there exists some constant, A, such that
EcL,

= THE(t)H dt (42)

We note that
ETWE >0 (43)

From (17), (21) and (43), we can write
%V(E(t),E(t),F(t) —E,(t)<-E"$"'E (44)

Using same idea of the part 1, we find

A THE(t)H2 dt (45)

1]

Where 5 - VEEQ)LE0).e(0)) g ¢, denotes the
minimum eigenvalue of ¢,

Therefore, E < L,* and thenlimE,(t) —0.

The estimation § approaches the disturbance d if
(37)and (38) are verified. Hence, the function p(q.q) must
be selected such that ¢~ satisfies the Eq. 40.

The inertia matrix M(q) for a two-link manipulator is
given by (Gawthrop and Smith, 1996).

j; + 2Xcos(q;)

M(q) = { ¥ X.COS(qZ )} (46)

1, + Xeos(q,) Is

Where j,, J., J; and X are inertial parameters, which
depend on the masses of the links, motors and tip load
and the lengths of the links.

From (40) and (46), we have.

" {[(j1 +2Xcos(q,)IB{j, + XCOS(qZ)W (47
B(j, + Xcos(q,)) i,

Where P = . SR
wip, +1)
Hence

" {2){[31 sin(q,) —XB, Sin(%)} (48)
—XB,sin(g,) 0

and from (32), we have

o B (j; +2Xcos(q,)) 4, +B {J, +Xeos(q,)) 4,
Pa.q) =
B (i, + Xcos(q,)) 4, +B j,a,
(49)
which completes the proof.

NUMERICAL SIMULATION RESULTS

Consider a two-link manipulator with masses m,, m,,
lengths 1,, 1, and angles q,, g, then the model equations
can be written as (3).

The elements of M(q) are given by
m,, = m,l%, + 2m,l 1, cos(q,) + (m, +m,)L°, m,, = m, = m,
1°, m,1%, cos(q,), m22 =m, 1,%.
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The elements of C(q.q)
€y, =-myl1, sin(q,)q, >
C,, =m,l1,sin(q,)q, .C»=0.
The elements of G(q)
G, =m, , sin(g,+ q) + (m ,+m,) I g cos(q).G #=m ]
sin(q+ qy)
In the following we will compare the simulation
results of the two cases (nominal case and true plant).
The nominal parameter values are assumed to be

C,, =-m,l,1,sin(q, )q,

m, = 0.4[kg], m, =0.6[kg], | =1m], L, =14[m]
The rue plant parameters are assumed to be m; =0.6 [kg],
m,=0.8[kg], 1, =1.6 [m].

The Coulomb and Viscous friction 1s considered as
an external disturbance.

Friction simulation: The external disturbance considered
1s Coulomb and Viscous friction, given by

d(q) = c;sign(q) +c,q (0

The pparameters for first and second links in the
simulation are given by

¢, =[0.00941 0.0176]"N.m D

¢, =[0.00156 0.0088]™.m/rad/s. 2

There are some problems in using the friction model
(50) in simulation directly. One is due to the discontinuity
of the friction characteristics at zero velocity, a very small
step size is required for testing zero velocity. The other is
that when the velocity 1s zero, or the system is stationary,
the friction is indefinite and depends on the controlled
torque. In the simulation, to improve the numerical
efficiency, a revised friction model, which is modified from
(Karnopp, 1985) is adopted. The revised friction model
can be described by

4, =d+(T, ~d) @V (53)

Where d is given by (50), d, is the revised friction, 1 is
a small positive scalar and T, is given by

K t>K
T (H)=1t -K<t<K (54
-K t<-K

Where K is a positive scalar.

N}

When the velocity is within a very small area near
zero, defined by 1, the friction d, is equal to the applied
torque T. When the velocity is greater than this, the
second term in the above expression vanishes and the
friction d, given by this revised model is equal to the
friction given by (50). In the simulation, I is chosen as
0.001.

Simulation results: Simulation parameters: K,= diag
{9001, 9001}, ¥ = diag {1000,1000}, n = diag {9000,9000}.
The desired trajectories are

q dl(t):Z—Tc sin (2« t)+75rad;0£t£3

Qu()=0.2sin (2m t )+1 rad: 0 <t<3.

The simulation results of the nominal case and
true plant are shown in Fig. 1 and 2, respectively. We
can see that the real tracjectory follows the desired
trajectory well in both cases and the control algorithm
works well.
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Fig. I: Desired and real position for the two-link

manipulator (Nominal case)
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Fig. 2: Desired and real position for the two-link

manipulator (the true plant)
CONCLUSION

This study has presented a disturbance observer
based tracking control sheme for robotic manipulators.
The system uncertainty, unmodeled dynamics and
external disturbances are lumped as the overall
disturbance. Therefore, the prposed algorithm requires
little knowledge of system structures. Following the
procedure presented in this paper, a disturbance observer
based tracking control is constructed which is
asymptotically stabilizing in the sense of Lyapunov. Even
though the theory is developed for constant
disturbances, it was shown that, the observer exhibits
satisfactory performance. A two link robotic manipulator
is used as an application example.
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