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Abstract: Most of non-linear type one and type two control systems suffers from lack of detectability when
model based techmiques are applied on FDI tasks. This research is centered on a strategy based on Closed Loop
Frequency Response Test (CLFRT) to estimate plant parameters which includes massive neural networks based
functional approximation procedures. Nominal plant parameters are matched against on-line estimated
parameters on a parity space approach. The strategy to carry out this task consists in developing a fault tolerant

data acquisition strategy to achieve a database to be used m neural networks traimng. Proposing and
implementing a methodology to estimate plant parameters by functional approximation based on

backpropagation neural networks.
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INTRODUCTION

Safety m process mdustty can be strongly
related to the detection and isolation of the features
mdicative of changes in the sensors actuators or process
performance. In using model-based approaches, when the
models describing the process are accurate, the problem
of fault detection may be scolved by observer-type filters.
These filters generate the so-called residuals computed
from the inputs and outputs of the process. The
generation of these residual signals is the first stage in the
problem of Fault Detection and Isolation (FDI). To be
useful m the FDI task, the residuals must be insensitive to
modeling errors and lighly semsitive to the faults
under consideration. In that regard, the residuals are
designed so that the effects of possible faults are
enhanced, which mn turn increases their detectability. The
residuals must also respond quickly. The residuals are
tested in order to detect the presence of faults. Various
FDI methods have been previously reported, such as the
papers of (Willsky, 1976, Tsermann, 1984; Frank, 1987a;
Gertler, 1998, Patton and Chen, 1991). Among the classic
books on the subject are those of (Himmelblau, 1978; Pau,
1981; Basseville, 1986).

Model based fault detection methods: Fault detection
methods based on process and signal models include
actuators, processes and sensors for which mputs and
output variables must be precisely measured. Such

methods deal mamly with parameter estimation, state
observers and parity equation methods. If measuring
system fails, fault detection methods based on the use of
input/output measurements yields ambiguous and/or
erroneous results.

A lot of research on model based fault detection
methods has been carried out during the last three
decades. In this study a brief list on process model based
fault detection methods 1s given:

»  Fault detection with parameter estimation (Gertler,
1988)

+  Equation error methods

s Output error methods

»  Fault detection with state-estimation.

¢ Dedicated observers for multi-output processes.

»  State Observe, excited by one output (Clark, 1978a).

¢+  Kalman filter, excited by all outputs (Mehra and
Peschon, 1971).

» Bank of state observers, excited by all outputs
(Willsky, 1976).

+  Bank of state observers, excited by single outputs
(Frank, 1987a)

s Bank of state observers, excited by all outputs except
one (Frank, 1987a).

¢  Fault detection filters for multi-output processes
(Beard, 1971).

¢+  Fault detection with parity equations (Isermann,
1984; Gertler, 1991; Patton and Chen, 1994).

s Qutput error methods.
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+  Polynomial error methods.

¢ Fault detection wusing analytical
(Ragot et al, 2000).

¢ Static analytical redundancy.

¢ Dynamic analytical redundancy.

redundancy

No general method exists for solving all FDI cases.
Successful FDI applications are based on a combination
of several methods. Practical FDI systems apply analytical
redundancy using the so-called first-principles like action-
reaction balances such as mass flow rate balance, energy
flow rate balance, force/torque/power balances and
commonly, the mathematical balance of any cause-effect
equilibrium condition.

As stated before, diagnosing techniques previously
mentioned, when applied to non-linear type one and type
two processes, suffers from lack of detectability. With
regard to residuals, they are the outcomes of consistency
checks between the plant observations and a
mathematical model. The three main ways to generate
residuals are parameter estimation, observers and parity
relations. For parameter estimation, the residuals are the
difference between the nominal model parameters and
the estimated model parameters. Derivations in the
model parameters serve as the basis for detecting and
isolating faults.

In most practical cases the process parameters are
partially not known or not known at all. Such parameters
can be determined with parameter estimation methods by
measuring input and output signals if the basic model
structure is known. There are two conventional
approaches commonly used which are based on the
minimization of equation error and output error. The first
one is linear in the parameters and allows therefore direct
estimation of the parameters (least squares) in non-
recursive or recursive form. The second one needs
numerical optimization methods and therefore iterative
procedures, but may be more precise under the influence
of process disturbances. The symptoms are deviation of
the process parameters. As the process parameters
depend on physically defined process coefficients,
determination of changes usually allows deeper insight
and makes fault diagnosis easier (Tsermann, 1984). These
conventional methods of parameter estimation usually
need a process input excitation and are especially suitable
for the detection of multiplicative faults. Parameter
estimation requires an input/output correct measuring
system. Some drawbacks of such methods are:

¢  The possibility of faulty measuring signals, an
unknown model structure or the necessity of an on-
line excitation of the input signals.

Goals to be achieved: Afore-mentioned diagnosing
techniques, when applied to non-linear type one and type

two processes, has the disadvantage of lack of
detectability. Consequently, the following worl will be
pointing towards other useful alternatives. This research
is focused on the problem of fault detection, fault
isolation and fault estimation by a novel parameter
estimation method associated to residual generation on
the basis of parity space approach. The proposed
parameter estimation method 1s based on functional
approximation techniques mmplemented with
Backpropagation Neural Network (BPNN) even under a
faulty measuring system.

The main tasks to be carried out are: Develop a fault
tolerant data acquisition method by means of CLFRT to
achieve a consistent database Develop a neural network
based structure to increase the accuracy and/or of
process parameters to be estimated.

ON CLFRT TECHNIQUES

This study 1s focused on the problem of fault detection,
fault solation and fault estunation on the basis of
parameter estimation by functional approximation
implemented with backpropagation neural networks
associated to frequency techniques on nonlinear type one
and type two systems, for which serious problems with
detectability exist.

Among the most important work carried out on
frequency techniques is (Eugene, 2002; Lucas et al,
1996) where a collection of computer programs for aircraft
system 1dentification 18 described and demonstrated.
The programs, collectively called System Identification
Programs for AirCraft, or SIDPAC, were developed in
MATLAB® as m-file functions. In Brian and Mark (1999)
it 18 reviewed all of the main topics associated with
experimental modal analysis (or modal testing), including
making FRF measurements with a FFT analyzer, modal
excitation techniques and modal parameter estimation
from a set of FRFs (curve fitting). In Douwe and Paul
(1998) a method is considered for the identification of
linear parametric models based on a least squares
identification criterion that is formulated in the frequency
domain. Nevertheless, mentioned methods, when based
on parameter estimation techniques are affective if
measuring system operates free of faults. That means,
measurement equipment operates without drift errors.
Consequently, when the possibiliies of sensor drift
errors exist, a method called CLFRT described below
is proposed.

Process characteristics based on frequency response:
Frequency response is understood as the gain and phase
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response of a plant or other unit under test at all
frequencies of interest. Although the formal definition of
frequency response includes both the gamn and phase, in
common usage, the frequency response often only implies
the magnitude (gain). In this study phase response must
be considered.

The frequency response H(f) 1s defmned as the
mverse Fourler Transform of the Impulse Response h(T)
of a system.

H(= Th(r)e”“ﬁdt (H

Frequency response measurements require the excitation
of the system with energy at all relevant frequencies. The
fastest way to perform the measurement is to use a
broadband excitation signal that excites all frequencies of
mterest sumultaneous and use FFT techniques to measure
at all of these frequencies at the same time. Noise and
non-linearity is best minimized by using random noise
excitation, but short impulses or rapid sweeps (chirps)
may also be used. The selected excitation signal for this
study is of the type given as

fet)= Z ASin(at) (2)

i=1

with three relevant frequencies (n = 3) and same amplitude
vielding

flot)= A Sin{o,t) +A,Sin(e,0)+ A,Sin(a,t) (3

Excitation function can be applied simultaneously or
sequentially. Obviously, when excitation signals are
applied simultaneously, the CLFRT 1s faster than
sequentially because the solution provided by applying
the FFT algorithm uses only a computational phase.

When the desired resolution bandwidth of mterest 1s
less than about 100 kHz, the fastest way to measwure the
frequency response functions is to use FFT based
techniques as it is done in this study.

For proper measurement, it 1s also umportant to take
mto account the nature of the type of signals that we are
dealing with.

As a rule of thumb, if there is a given percent
distortion or noise 1n the system, the error will be of the
same order of magmtude. The output must be statistically
correlated to the input. This assumption is normally true
in high fidelity analog systems. However, in mechanical
systems, as well as systems with complex transmission
mechanmism and/or with digital encoding, echo cancelling

Xs T ¢f' fo¢ X
et > >0 > Op>

Fig. 1. Structure of the CLFRT

and other adaptive techniques, this assumption may not
be fulfilled. To account for all of the above, it can be used
digital signal processing technicues. In this research FFT
is to be applied.

The output of a stable nonlinear system under the
effect of a smusoidal continuous disturbance consists
in a steady-state oscillation about an equilibrium point
and still be considered stable. Such an oscillation similar
to a limit cycle 13 a periodic though not sinusoidal
oscillation whose amplitude |G|, and phase ¢, 1is
dependent only upon the magnitude of the nput and
the characteristics of the system.

When stationary processes are under consideration,
the technique does provide a useful tool for the process
parameter changes detection as shown in this work. If a
change in the characteristic values of the frequency
response (amplitude and phase) is observed, this means
that some parameters of transfer function has changed.
The method requires a sine generator added to a closed
loop controller as shown in Fig. 1.

It follows that if any change m system parameters
takes place, then the magnitude and phase, will change
also. This property 1s expressed as:

(G

o 0o =) 1=1---M (4

With P, the system parameter set. So that, the condition to
asseverate system parameter mvariance which means to
confirm that no parameter has changed 1s

(¢ &)

,+0.) =f(P)=|G

mN’¢mN

Where |Gl and ¢,y are the nominal amplitude and
phase respectively corresponding to the nominal
parameters set Py,

It should be noted that Eq. 3 and 4 give us
approximate values for |G|,y and ¢,y because the
measuring system introduces an additional error into the
systemn which must not be relevant. However, for most
systems, the approximation is enough for

engineering purposes.
Nevertheless, when a system transfer function is

close

influenced by any auxiliary or external variable, (variables
different of the input/output of the transfer function), they
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should be taken into account. As consequence of the
existence of such variables, (3) can be rearranged as
follows:

(G

o2 00) = (P, V) (6)

If a sinusoidal function of amplitude A inserted in
parallel with a feedback controller 1s forced to change 1its
frequency to a new value, then a different pair of
amplitude and phase as frequency response is achieved.
Such idea 13 expressed as

Ao, =(G

ol ’¢m1)
A0, :>(|G\m2,¢m2) )

A6, :>(\G

on ’¢'mn)

for identification pourposes the amplitude of the
excitation signal can be salected such that A, = A, = ... A}

vielding

A0, = (G
Ao, =(G

ml’¢"°1)

0l ’¢m2)
Ao, = (G| .0,

Consequently, the application of (5) yields

(¢
G

ml’d)m)
m25¢m2)

=f(P,V) (8)

1

(o

on ’¢m")

Expression (7) states that any pair of amplitude and phase
15 function of the complete set of plant parameters and
related external variables (coupling variables).

Independence of output sensor error (drift)

Theorem I: Magnitude and phase of a frequency
response measured under sensor drift is not altered due
to such fault.

This theorem applied to the CLFRT means that the
magniude and phase of the frequency response of a
closed loop controlled system excited by the manipulated
variabale doesn’t depend on the output measuring system
performance due to constant drift.

Proof: Given the closed loop system shown in Fig. 1
based on a SISO case and assuming that £, 1s an addictive
fault to the output (a constant drift on output measuring
variable x) and asumming that such fault doesn’t
introduce any additional time lag on the system, real
amplitude of output 1s such that

x=y+f, (9
the limit values of output response are
X =y, t 1 (10)
x =y, +£ (11)
the value of the output range 1s such that
X=X % =Mt -yt =yn-n A2

From Eq. 11 follows that drift based output sensor faults
doesn’t affect the measured output along its full range.

Advantages of the method: This method has several
distinct  advantages
estimation methods:

over conventional parameter

¢ Tt doesn’t depend on the output measuring errors
(drift of system output sensors)

¢+ No a priori knowledge of the system parameters is
needed. The method automatically results n a
sustamed oscillation at the excitation frequency of
the process. The only parameter that has to be
specified 1s the frequency and amplitude of excitation
signal.

» It is a closed loop test, so the process will not drift
away from the setpoint. This is precisely why the
method works well on highly nonlinear processes.
The process 1s never pushed very far away from the
steady-state conditions.

Applying CLFRT on parameter change detection:
Intuitively, the set of parameters P; of a non-structured
process model which 1s not affected by external variables
can be associated to a set of data like ultimate frequency
response data (amplitude and phase) by means of the
CLFRT described in last section. This idea is described
with the Fig. 2.

To fulfill the requirements for training a feedforward
backpropagation neural network, a database relating plant
parameters P, and the asscciated pairs of (amplitude
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byt

Fig. 2: Frequency response measuring using FFT

Databas
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Fig. 3: CLFRT to achieve the necessary data to be used
in NN traming

andphase) must be achieved using the data structure
described by (7). Such pairs
corresponding to actual plant parameters are nominal
ultimate values if and only if, plant parameters are

of ultimate values

nominal. Tn this situation it is assumed a fault free plant
operation mode. Figure 3 shows the implementation of
CLFRT to achieve the actual demanded data.

When an CLFRT is applied on a real time process, the
functional relation of every data set is subjected to the
functional scheme

f(P,P,,-- P Pu.|G], . 0,) (13)

M-12

Where the process variables don’t mfluence the HB test,
bemng P,, P,, .. P,; the plant parameters and amplitude and
phase are the outputs of CLFRT.

The simplest idea to identify only one parameter
consists n applying a functional approximation technique
based in the use of backpropagation neural networks
properly trained as shown in Fig. 4. Figure 4 illustrates the
case of a plant with unknown model structure and three
(but could be any other quantity) accessible (known by
any means) parameters P, P, and P..

The general procedure to achieve a database useful
to train the neural network based parameter estimator,
consists in the following tasks described in Fig. 5:

¢+ Application of the CLFRT and record the data
relating the plant parameters with the pairs of
amplitude and phase.

+  Generation of the neural network structure (number
of hidden layers and the number of neurons per
layer).

*  Traming the neural network with the achieved data
using the appropriate algorithm to achieve accurately

Database containing plant
parameters and results of CLFRT

P P, P G|, '

NV

Target Pattern
data data
Backpropagation
NN training phase
P, —»
5w A
o W
by,

Fig. 4: Tasks involved in achieving a neural network
parameter estimator

P

Plant Pl > P "
P> L [FDI

P, Trained NN —» .
o> soritm

" tv.

Fig. 5: Scheme of parameter estimation and diagnostic

tasks

a functional approximator which will operate as a
plant parameter estimator.

Figure 5 shows a parameter estimator or functional
approximator, which consists in a trained neural network
as shown in Fig. 4, ready to identify a plant parameter, P,,
when real time or actual data 1s applied to the inputs. So
that, the tasks necessary to identify a unique plant
parameter, requires again the on line CLFRT to obtain the
actual pair of magnitude and phase. By introducing such
actual values including the rest of known parameters and
related variables (if 1s the case) to the neural network
inputs, it yields at the neural network output, the actual
value of the plant unknown parameter. The accuracy in
the value of the estimated parameter 1s crucial because it
will be immediately applied into a parity space approach,
which is the core of the diagnostic tasks.

Let’s assume that no external or coupling variables
excites the transfer function. In such situation, an
inherent property of functional approximation is the
loss of output data accuracy as the number of
parameters to be estimated increases with respect to
the total number of function parameters. Let a function
relating the plant parameters with the pair of magnitude
and phase by applying an CLFRT be expressed as:
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Fig. 6; Estimation with two known parameters of three.
(a), estimation of parameter P, with (P,, P;)
known. (b), estimation of parameter P, with (P,, P,)
knowmn. (¢), estimation of parameter P, with (P, P,)
known

then, the idea for achieving more accurate parameters in
the 1dentification task is expressed as follows:

being

P =f(P,,---P, .P,.|G[.0) (15)

e

G

M-17
and

P.P,=f( P, .P,.|G.o) (16)

then, follows that the results of the estimation task using
a backpropagation neural network trained by means of the
conjugate gradient algorithm with the same data, aclieves
more accurate results in the case described by expression
(14) than in the case described by expression (15).
Consequently, the accuracy in the estimation of plant
parameters can be improved by mcreasing the number of
accessible plant parameters considered nto the functional
description of the plant with respect to the number of
parameters to be estimated.

According last asseveratiorn, the comparison of
Fig. 6 and 7 shows such concept. Thus, mn Fig. 6 it 1s
shown an example of the case where for every neural
network based parameter estimator, only a parameter
15 estimated. In this case a process described by a

5 Glen P2

NN1

Y v vy
<
Rule based residuals

P1 ——

Pl
iHew Oy
o 3
NN1 3
P3, 2
) %
Py » E

P2 NNZ2
Pl

PI' +

i O
—P»| NN1 E
() e E
Nl 3

P3 P N2 -

Fig. 7. Estination with one known parameter of three. (a)
parameter P, (b), parameter P,, (¢) parameter P;

structured model with three parameters (P,, P,, P,) is
considered. Consequently, the pair of remaining non
estimated parameters must be well known. In Fig. 7 it is
shown the case where for every parameter estimator, two
parameters are estimated assuming a considerable
reduction in the estimates accuracy. In the Table 1 it 1s
shown the arrangement of data achieved by applying the
CLFRT on the considered process f (|G|, ¢, P, P,, P,
represented 1 Fig. 6 and 7, respectively.

Implementation of the FDI method on a servomotor

System description: This study deals with the
implementation task concermning to FDI on a pilot
servomotor using parameter estimation by means of
proposed techniques. The servo under study is specially
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Table 1: Data structure for nn training

Table 2: CLFRT characteristics

Figure Pattern data Target data

LR |Gz |Gz, B

6 Gl.co, P2, B3 Pl
|Gl.co, P1, P3 P2
|Gl.co, P1, P2 P3

(@) |Gl,co, P1 P2, P3

7(b) |Glco, P2 P1, P3

76 |Gl.co, P3 P1,P2

designed to research the effect of varations on inertia
load and viscous friction load. It consists in a Variable
Speed Drive (VSD) responsible of supplying variable
energy to an AC motor. The AC motor drives both, a
variable inertia load and an electric brake, mechanically
coupled on the motor shaft as shown in Fig. 8 Such
servo-system installation 18 equipped with measurement
mstrumentation to record the necessary process variables
including supply voltage, variable friction emulated by
the brake, by measuring the supply current I;. Inertia
load 1s computed by measuring the rotating mass attached
to the motor shaft.

In the notation used in Fig. 9, Km 1s the proportional
constant relating the torque developed with an mput or
control voltage e, generated by the VSD. B, is the
constant that relates the back e.m.f. with the shaft speed.
I,; and B,; are the nertia and viscous friction of the motor
at zero external load. K is a constant relating brake torque
with the shaft speed and supply current I;. An approach
to the servo linear transfer function is achieved from the
block diagram of Fig. 9, yielding

) K, Km an

e, s[Jy+1)s+B,+B Km+LK|

The modus operandi of any AC motor coupled to external
loads 1s inherently nonlinear, where its model may result
non-structured, due to the nonlinear nature of internal and
external loads, including inertia and friction. The method
studied in this research project is especially designed to
non-linear and non-structured systems.

For research or experimental purposes, inertia and
friction loads will be changed by means of varying T, and
I;, respectively.

Achieving a database: In order to achieve a consistent
database, a series of CLFRT relating the relevant plant
parameters such as inertia load I, and load friction (not
necessary viscous friction) I;, are performed. Input data
for CLFRT are the exciting frequencies, known plant
parameters and PID parameters, as shown in Table 2.

The achieved database contains the inputs (actual
plant parameters, J;, I;) and outputs of CLFRT tests (|G|,
¢,) as function of input frequencies shown in Table 2.
Under such conditions, a database shown m Table 3 of
Appendix T was achieved.

cps 0.6 1 1.4 16, 63,5
cps 0.8 1.2 1.6
cps 1 1.4 1.8

Computer and

/O hard ™ » Brake drive

I
I
4 I
I
|

A 4

|_v£|___

AC motor Variable

inertia load

Variable
friction load

Fig. 8 Lab-servo scheme

Friction load » 3 [&—0s

VsD | Kn

Back

1 ¢]
s[(Jx+I)e+By

Fig. 9: Block diagram of a linearized servomotor depicted

with Fig. 8
Using the database data: The results of a consistent
database like those of Table 3 are used in

backpropagation neural network trainming phase. The
training algorithm selected is the conjugate gradient
Fletcher-Reeves implemented on the Neural Network
toolbox of Matlab under off-lme traiming sessions.
Consequently, the selected neural network architecture is
defined by means of the Matlab expression:

net = newff(minmax (p), [10, 10, 1],
{“tansig’, tansig’, purelin’}, traincg ™)

which consists of a feedforward Backpropagation NN
trained with, tramegf algorithm.

After several training sessions with different data
structures from the database in Table 3, some of the
traimng results are shown in Table 4.

MSE 13 an acceptable performance index to evaluate
the accuracy of the estimates in the training results as
shown in Table 4. By comparing the values of rows
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J1o B Magl Fasel Mag2 Fase2 Mag3 Fase3

4 1 0.630947 -90.6335 1.85844 -151.137 1.34405 -202.767

4 1.5 0.577644 -82.4399 1.47806 -137.228 119672 -190.562

4 2 0.624697 -79.9567 0.715435 -112.035 1.07464 -181.289

4 2.5 0.340753 -69.0807 0.776777 -108.933 0.973985 -173.917

4 3 0.50778 -75.5674 0.31516 -86.8589 0.803768 -165.694

8 1 3.74226 -133.783 1.86431 -195.39 0.800792 -233.477

8 1.5 2.9606 -121.859 1.70908 -185.509 0.785869 -227.676

8 2 243303 -112.493 1.56625 -177.454 0.768264 -222.395

8 25 2.00016 -104.434 1.43569 -170.567 0.749173 -217.57

8 3 1.49718 -96.0878 1.24458 -163.255 0.72928 -213.104
12 1 343234 -158.421 1.36418 -211.309 0.546214 -242.902
12 1.5 2.97064 -147.013 1.32754 -204.959 0.541649 -240.099
12 2 2.64801 -138.778 1.28451 -199.406 0.54196 -237.331

12 2.5 2.38695 -132.139 1.23916 -194.481 0.538541 -234.617
12 3 2.17022 -126.589 1.19347 -190.024 0.534575 -232.033

16 1 2.92106 -171.336 1.04037 -218.568 0405086 -244.309
18 1.5 2.66564 -162.378 1.0374 -214.639 0.405052 -242.515

16 2 24814 -155.682 1.02794 -211.136 0404214 -241.159
18 25 2.31698 -149.825 1.01309 -207.541 0403332 -239.867
16 3 217202 -144.651 0.9955%96 -204.217 0402578 -238.676
Table 3b: Database data

J10 B Magl Fasel Mag2 Fase2 Mag3 Fase3
4 1 2.6746 -125.297 179022 -180.629 0989218 -221.14
4 1.5 1.77295 -110.39 1.49478 -167.237 0916567 -210.166
4 2 0.695943 -7 7064 0.996662 -153.567 0.849307 -201.419
4 2.5 0.5733806 -94.1128 1.06923 -149.306 0.789635 -194.282
4 3 0.546804 -93.0729 0.485661 -126.711 0.737531 -188.299
8 1 2.61474 -169.578 1.2063 -216.937 0.54935 -246.144
8 1.5 2.24055 -158.235 1.15893 -209.083 0.544081 -241.943
8 2 1.98747 -149.661 1.10825 -202.368 0.537241 -237.839
8 2.5 1.78496 -142.778 1.05757 -196.489 0.529349 -233.889
8 3 1.61891 -137.027 1.00984 -191.35 0.520752 -230.147
12 1 2.06794 -188.79¢6 0.837469 -228.929 0360271 -250.356
12 1.5 1.91327 -179.58 0.831012 -224.72 0.360459 -248.385
12 2 1.79584 -172.928 0.821058 -220.806 0.360388 -246.325
12 2.5 1.68784 -167.169 0.809019 -217.086 0359211 -244.129
12 3 1.59328 -162.306 0.795808 -213.571 0357161 -241.682
18 1 1.64839 -197.36 0.634568 -234.822 0.262523 -252.148
16 1.5 1.599 -192.165 0.63431 -232.208 0.263625 -250.943
18 2 1.54376 -187.441 0.632822 -229.754 0.264482 -249.729
14 2.5 1.48812 -183.036 0.63041 -227.379 0.267983 -246.672
1o 3 1.41268 -179.102 0.627119 -225.063 0.268751 -245.759
Table 3¢: Database data

J10 B Magl Fasel Mag2 Fase2 Mag3 Fase3

4 1 2.30435 -155.432 1.34389 -202.762 0.729246 -236.15

4 1.5 1.75764 -143.802 1.19672 -190.562 0.694227 -226.756
4 2 1.46539 -134.268 1.074% -181.304 0.658557 -218.842
4 2.5 1.24321 -126.515 0.974055 -173.921 0.623996 -211.988
4 3 1.05873 -119.575 0.890096 -167.81 0.590342 -205.912
8 1 1.74741 -196.424 0.800775 -233.478 0.37953 -252.361
8 1.5 1.59163 -186.692 0.785816 -227.684 0.377651 -248.597
8 2 1.46714 -178.939 0.768332 -222.412 0.374142 -245.538
8 2.5 1.36609 -172.588 0.749183 -217.57 0.370842 -242.526
8 3 1.27612 -167.111 0.729291 -213.103 0.366509 -230.698
12 1 1.27229 -210.531 0.546219 -242.903 0.252041 -255.862
12 1.5 1.20753 -204.765 0.544517 -240.108 0.253264 -255.043
12 2 1.16342 -199.088 0.541939 -237.312 0.252438 -253.977
12 2.5 1.13264 -194.392 0.538631 -234.645 0.250191 -252.564
12 3 1.10846 -190.626 0.534576 -232.029 0.24936 -250.258
18 1 0.989041 -217.14 040513 -244.317 0.211469 -258.976
16 1.5 0.939164 -212.4 0401896 -242.563 0.185839 -258.426
18 2 0.926884 -209.136 0404357 -241.125 0.186544 -257.876
16 2.5 0.917435 =205 998 0403286 -239.783 0.186443 -256.939
18 3 0.909402 -203.069 0.402598 -238.682 0.186211 -255.534
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Table 4: Performance of the VSD

P cps Epochs MSE Gradient

J 0.6-1-1.4 390/500 0.35617/0 21.295/1e-6
B 0.6-1-1.4 100/500 0.02040/0 2.6004/1e-6
I 0.8-1.2-1.6 233/500 1.02925/0 7.6725/1e-6
B 0.8-1.2-1.6 152/500 0.05465/0 2.2189%1e-6
I 1-1.4-1.8 226/500 1.66875/0 3.3820/1e-6
B 1-14-1.8 120/500 0.05524/0 2.8037/1e-6

CLFRT

6] |
@

y
Rule based evahiation task

h 4
-
—_—

Fig. 10: Test to check the performance of mertia and
friction load

corresponding to target I, in the index MSE values, it is
observed some differences, which indicate the degree of
accuracy that can be expected.

If the number of parameters to be estimated is
reduced (from two to one for instance), the accuracy of
estimated parameters increases drastically. Nevertheless,
our objective is to estimate as much as possible
parameters with mimmum data in the database, which
imply estimating many parameters by penalizing its
accuracy into a range of acceptable values.

In Table 4 it is observed that MSE from training
results 1s variable for every CLFRT. Such value 15 an
indication of the accuracy that can be expected.

Faults diagnostic task: The first task to be carried out is
the on line parameter estimation on the basis of trained
neural networks. The task of fault diagnosis consists of
the determination of the type of fault with as many details
as possible, such as the fault size, location and time of
detection. Rule based inference methods are applied.
Starting from some priory knowledge regarding the safety
or normal plant parameters, J and 1, every deviation from
expected nominal values are considered as faults located
at physical parts responsible for such deviations.

Figure 10 shows the case where the Tnertia and
friction loads are to be checked. In thus task it 1s assumed
that the rest of plant parameters remain constant.

Fault 1solation 1s carried out by means of a rule based
procedure. If residuals arising from estimated inertia and
friction loads mcreases over a predetermined value,
obviously, it is an indication of a fault associated with
parameters involved in such residual. So that, 1solation of
faults on the basis of residuals is a deterministic task.

RESULTS AND DISCUSSION

There are shown three databases in appendix T,
achieved as results of applymg the CLFRT under
three frequency ranges. In Fig. 11-13 there are shown
the three parameter estimators cormresponding to the
three frequency ranges. Such parameter estimators are
shown for comparison purposes although in practice
only one of them is to be applied Both parameter
estimators supply the estimated values as function of
input data. The results of comparing the estimated values
with the nommal ones, yields the residuals, which are
used to detect the associated faults. Consequently, if a
fault 1s detected, then the faulty parameters give us an
indication of the fault location. Tn Fig. 11-13 the results of
parameter estimation, as well as the corresponding
residuals. It is observed that no relevant differences
appear between both residuals, which means that the
servo-system is operating free of faults related with the
inertia and friction.

Previous to the described application, several
experiments were carried out to validate the proposed
methodology. Some of them were performed under
simulation for systems of type 1 and 2. It must be noted
that for plants described by type zero models, with large
damping coefficients no advantages of the method are
detected because conventional methods are quite
effective.

The aim of this research was to develop and
implement a method to detect and 1solate faults on the
basis of parameter variation detection in processes even
when under faulty measuring systems (output sensor
drift). Furthermore, the method is focused towards plants
of type 1 and 2 where conventional FDI methods don’t
solve effectivelly such problems.

Pointing towards contributions, the following were
achieved:

¢ The estimation of plant parameters by means of the
application of a series of CLFRT.

¢+  The application of the CLFRT even under faulty
measuring system (drfit).

¢+ The possibility of increasing parameter estimates
accuracy by increasing the number of series of
CLFRT, which means increasing the database size.

The most relevant advantages of this strategy are:

¢+ FDI method doesn’t depend on the quality of
measuring system m cases of sensor drift.

¢+ The on-line test can be applied with the plant
operating under nominal setpoints, without
disturbing or interrupting operation or production.
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Fig. 11: Tdentification results for database of Table 3a
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Fig. 12: Identification results for database of Table 3b
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Fig. 13: Identification results for database of Table 3¢

¢ The strategy is useful under partially known model
structures.

The most relevant disadvantages are:

» The time necessary to estimate the parameters
increase, as does both the accuracy and number of
parameters to be estimated.

»  The computational effort increases with the required
accuracy and number of parameters.
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