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Abstract: The dynamic behaviour of a Bernoulli-Euler Beam traversed by a linearly varying distributed moving
load is investigated. Using a series solution for the dynamic deflection in terms of normal modes, the
equation governing the model 1s reduced to a set of ordmary differential equations whose solution 1s
obtained in form of a Duhamel integral. Several numerical results are presented to show the effects of linearly
varying distributed moving load on the dynamic behaviour of the beam. Tmportant conclusions are drawn for

structural design purposes.
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INTRODUCTION

Several mvestigations have been carried out on the
problems of the dynamic response of structures to
moving loads (Fryba, 1972; Kopmaz and Telli, 2002;
Gbadeyan and Dada, 2001, 2006; Sadiku and Leipholz,
1987:. Mohmoud and Abouzaid, 2002; Esmailzadeh and
Gborashi, 1995, Dugush and Eisenberger, 2002;
Adetunde et al., 2007, Michactsos and Kounads, 2001,
Michaltsos, 2002). Such studies are of importance in the
field of transportation and m designing space station
facilities and machine parts. In fact, a moving load induces
larger deflections and stresses on the structure on which
1t moves than does an equivalent static load. As there are
several different structures on which loads move so are
many types of load. Consequently, moving load problems
did and still continues to draw attention of researchers
(Fryba, 1972, Kopmaz and Telli, 2002; Gbadeyan and
Dada, 2001, 2006; Sadiku and TLeipholz, 1987,
Mohmoud and Abouzaid, 2002, Esmailzadeh and
Gborashi, 1995, Dugush and Eisenberger, 2002;
Adetunde et af., 2007; Michactsos and Kounads, 2001,
Michaltsos, 2002). i the field of engineering, applied
mathematics and physics.

For simplicity, moving loads can be assumed or
approximated to be concentrated otherwise they are
distributed. The problems that nvolved the former, that 1s
concentrated moving load problems, have been the most
common subject of investigation among researchers. This
1s perhaps due to the fact that it 15 a simplified formulation
for moving load problems. On the other hand, a more
realistic approach 1s to assume that the load 1s distributed
over a length or contact area as it moves. In the case of a
distributed load, a load that is distributed with constant
magnitude 18 referred to as umiformly distributed wiule
load's distribution of the form C, + C,. X, where C, and C,

are constants and X is a variable, is said to be linearly
distributed. While there are a very limited number of
publications on beams with distributed loads, most
of  these few publications focused on uniformly
distributed problems (Gbadeyan and Dada, 2001, 2006;
Esmailzadeh and Gborashi, 1995; Adetunde et af., 2007).
The idea behind assuming a uniform distribution is
encouraging 1in that it results in a considerable
simplification of moving load's distribution problems.
However, in the practical sense, in the area of road
transports, designing of machine parts and aerospace
engineering, uniform distribution 1s just a specific case
and the simplest. Hence, it is more practically useful to
consider the load as linearly distributed as opposed to
a uniformly distributed.

In this context, this study focuses on the effects of a
linearly varying distributed moving load on the deflection
of a beam. Numerical example involving a simply
supported beam is presented.

MATHEMATICAL FORMATION
AND SIMPLICATION OF THE
GOVERING EQUATION

The vibration of a beam as described by Bernoulli-
Euler’s differential equation, based on the assumption
that the theory of small deformations, Hooke’s law,
Navier’s hypothesis and saint-venants’s principle, is
bemng applied. Further assumptions are as follows: The
beam 1s of constant cross-section and constant mass per
unit length, the moving mass moves at constant speed
from left to right and the beam damping is proportional to
the velocity of the vibration.

Under the above assumptions, the governing

equation of motion 18 described by the following equation
(Fryba, 1972).
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Where
x 18 the length coordmate with the origin at the left-hand
end of the beam,
t is the time coordinate with the origin at the instant of the
force arriving on the beam,
w (x,t) is the beam deflection at point x and time t,
measured from the equilibrium position when the beam 1s
loaded with its own weight,
E is young’s modulus of the beam,
I 1s the constant moment of mtertia of the beam cross
section,
1 18 the constant mass per umt length of the beam,
w, is the circular frequency of the damping of the beam
q(x, t) 1s the applied force

The linearly varying distributed moving applied force
is described by the expression (Pilkey and Pilkey, 1974)
W, - W
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Where w, = M,g and w, = M,g are the forces produced
by masses M, and M,, respectively at the end points of
the load as shown in Fig. 1, d = a, - a, 1s the length of the
load, a, = Vt-d/,,a, = Vt+d/,, v is the velocity of load, g is
the acceleration due to gravity and the Macaulay notation
1s defined as
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Fig. 1: A beam of span L. under a linearly varying
distributed load

A series solution of Eg. 1 in terms of the normal

modes will be sought in the form wix,t)= ZN:X (Xt (1)
n=1

and in the absence of damping (Neglecting the damping

term), Eq. 1 becomes
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The n-th normal mode of vibration of a uniform beam
satisfies

A X

. s
X,(x)= A, Sin " ot

A
+B,Cos LX‘F
L

L &)

C,Sinh

DnCosh;\'LX
L

where 4, A, B,. C, and D, are constants whose values are
obtained by applyingthe boundary conditions of the
beam.

The natural modes defined by Eq. 5 satisfy the
homogeneous differential equation

EL X" (%) - polX, (x) = 0 ©)
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Where the natural circular frequencies 2 = ™o -
n “L

Equation 6 may be expressed as
EIX ()T, (1) = pe'X, ()T, (1) @)

Multiplying both sides of Eq. 4 by X, (x), making use
of Eq. 7 and then mtegrating it along the entire length of
the beam, we have.
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At this juncture, we remark that for simply supported
boundary conditions, we have w(0, t) = w(L, t) = w'{(0, t) =
w' (I, t) = 0, while the initial conditions

are w(x,0)=w(x,0)=0

Applying these conditions, we have

1 ‘n*El
Xn(x):Sin%,a:—andcoi: 1 ﬂ4 )
L 2 pL

Equation 8 can be evaluated by substituting the set of
Eq. @ into it and we obtained

T O+l (=Pt

The solution of Eq. 10 are given in terms of Duhamel’s
integral as

T (t)= @Ljnl Pn(t)sin on(t — t)dt (11)

Equation 11 may be written as
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Using the non-dimensional quantities
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The applied force for the concentrated moving load is
described by

g Go )= Mgd (x-a,)
Where
O(x - a,) is the Dirac-delta function.
Following the same procedure, the non-dimensional
displacement forconcentrated moving force is w; (X, 1)

W, (& T) = Sin(n® {Sm(mnit)tsm%t N Smmnt_S]Ii(mwt)}(l 5)
(v +, ) (T —, )

Where M is the dimensionless mass of the concentrated

load.

RESULTS AND DISCUSSION

In this study, numerical results are presented m both
graphical and tabular forms. The effects of lnearly
varymg distributed loads moving with constant velocity
are discussed. To illustrate these effects, the model
considered is a beam of length I. = 12 m, mass per unit
length p = 45 kg m™ and EI = 2587 Nm~* which is
traversed by a moving load of weight with velocities 3,
4 and 5 m sec".

The influence of a moving load's distribution on a
beam's deflection for d=0.1, or g = 0.0083 with various
dimensionless values of mass M = 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4and 1.6 are shown i Table 1. For various values of
distribution's slopes G =0, 5, 10, 15, 20 and 25 considered,
the results show that the amplitude of the deflection
w,, = 1000 W increases with an increase in the value of the

. nnd _ — . —— . —nnd
- — d
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Table 1: Percentage comparison of dimensionless mid -span deflections
between uniformly distributed and linearly varying loads for
various gradients

G=0 G=05 G=10 G=15 G=20 G=25

M =02 Wy -05901 -0.5671 -0.5494 -0.5362 -05253 -0.5160
R% 0 3.9038 6.8955 9.1421 109817 12.5694

M =04 Wy -1.1803 -1.1549 -1.1342 -1.1165 -1.098%9 -1.0832
R% 0 2.1480 3.9038 5.3997 6.8955 82223

M =06 Wy -1.7704 -1.7450 -1.7197 -1.7013 -1.6836 -1.6660
R% 0 1.4320 28640 3.9038 4.9010 5.8983

M =08 Wy -23605 -23352 -23098 -22860 -22684 -2.2507
R% 0 1.0740 21480 3.1558 3.9038 4.6517

M =10 Wy -29506 -29253 -2.8099 -28746 -2.8531 -2.8354
R% 0 0.8592 1.7184 25776 3.3054 3.9038

M =12 Wy -3.5408 -3.5154 -3.4901 -3.4647 -3.439%4 -3.4202
R% 0 0.7160 1.4320 2.1480 2.8640 3.4052

M =14 Wy -41309 -41055 -4.0802 -4.0548 -4.0295 -4.0049
R% 0 0.6137 1.2274 1.8411 24549 3.0490

M =16 Wy -47210 -4.6957 -4.6703 -4.6450 -4.6196 -4.5943
R% 0 0.5370 1.0740 1.6110 2.1480 2.6850

slope G. It can be noticed from the table that as the mass
M increases, the percentage R = 100 (w,-w, )/w, decreases
persistently where w, is the dimensionless deflection for
G = 0. The percentage comparisons between a beam's
deflection w, produced by a uniformly distributed mass
and the other that 1s produced by a linearly distribution
mass shows that percentage increase R decreases with an
increase in dimensionless mass M for the same value of
the slope.

In Fig. 2, the dimensionless time history of the load
on the beam versus dimensionless mid-span deflections
for positive slopes 0,10,and 20 are graphically shown. It
can be clearly seen from this figure that the greater the
slope of the moving load, the higher the amplitude of the
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Fig. 2. Dimensionless time lustory of mid-span
dimensionless deflections of the beam for
gradients and fixed M =05, § =0.0083 and= ¥

0.1251
9
-1.8. Time
—G=0-+G=-10 - G=-20
Fig. 3: The dimensionless deflection-time lustory

response at mid-span for some negative gradients
and fixed M =0.5,= g 0.0083 and= ¥ 0.1251d

dimensionless deflection w,. The maximum amplitude of
the deflection for slope G = 0, 10 and 20 occurred when
the load are linearly distributed on (0.3616< x <0.3699),
(0.3283<  <0.3366)and(0.3283< x <0.3366),respectively.
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Fig. 4. The effects of ratio g on the dimensionless mid-

o

span deflection for some gradients and fixed M =
0.5, =3 00083 and = v 0.1251

3. Time

—vb=0.1251 —o--vb=0.1668 —ar-vb=0.2085

Fig. 5:Dimensionless  time history of mid-span
dimensionless deflections of the beam for
velocities and fixed M =04, = @ 0.0417 and G =35

Figure 3 shows the dimensionless deflection-time
response at mid-span for negative gradients 0, -10 and -20.
The figure shows that amplitude of the dimensionless
deflection reduces with the corresponding reduction in
the slope.
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Figure 4 shows the maximum amplitude of
dimensionless deflection for vanation of ratio of the
load's length to beam's length at different time for fixed
v =01251. It is evident from this figure that the amplitude

of the deflection is decreasing by increasing the ratio i
L
for all value of G considered.

Figure 5 depicts the time history of the maximum
dimensionless deflections of some velocities where other
parameters are fixed (M =0.4, d=050rd=0.0417,G=3)
As expected, these results show that the maximum
amplitude of dimensionless deflection mncreases with an
increase 1 velocity.

CONCLUSION

The problem of assessing the
behaviours of simply supported undamped Bernoulli-
Euler beams under alinearly varying distributed moving
load is considered. The governing equation for the
mathematical model is analytically simplified into a set
of ordinary differential equations that are solved by

dynamic

using Duhamel mtegral Clearly, the linearly varying
loads  have considerable effects on the dynamic
behaviour of the beam.

The result extubits the following interesting
features:

. The effects of the linearly varying load on the
dimensionless  dynamic mid-span deflection
increases with the increase in the slope G of the
distribution of the moving load.

. As the ratio of the load's length to beam's length
increases, the response amplitude of the
dimensionless dynamic deflection reduces.

. The amplitude of the dimensionless deflection
increases with an increase m velocities of the
moving load.
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