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Abstract: The response of non-initially stressed Euler-Bemoulli beam with an attached mass to uniform partially
distributed moving loads was examined. The governing partial differential equations were analyzed for both
moving force and moving mass m order to determine the dynamic behavior of the system. The response
amplitude due to the moving force was greater than that of the moving mass. The response amplitude of the
moving force problem with non-mitial stressed mcreased as the mass of the load M was increased.
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INTRODUCTION

All branches of transport system have experienced
great advances characterized by mereasing higher speeds
and weight of vehicles. As a result, structures and media
over or in which the vehicles move have been subjected
to vibrations and dynamic stresses far larger than ever
before.

The vibrations of elastic and inelastic structures
under the action of moving loads have been investigated
extensively and continued to be studied. Tn all the studies
discussed above it was only the force effects of the
moving loads that are taken into consideration.

The structures subjected to moving loads are usually
modeled as elastic beams, plates or shells. The problem of
elastic beam under the action of the moving loads has
been considered under the assumption that the mass
of the I s smaller than that of the load and
obtained an approximate soluttion of the problem.
(Esmailzadeth and Gorashi, 1995).

The response of finite simply supported Euler-
Bermnoulli beam to a unit force moving at a uniform
velocity has been investigated where the effects of the
moving force on beams with and without an elastic
foundation were analyzed.

beams

In this study, the response of non-imtially stressed
Euler-Bernoulli beam with an attached mass to uniform
partially distributed moving loads 1s presented. The main
objectives are:

¢+  To present the analysis of the dynamic response of
a non-initially stressed finite elastic Euler-Bernoulli
beam with an attached mass at the end, but arbitrarily
supported at the end, to uniform partially distributed
moving load.

¢+ To present a very simple and practical analytical-
numerical techmque for determining the response of
beams with non-classical boundary conditions

carrying moving mass.
DEVELOPING THE GOVERNING EQUATION

With reference to Fig. 1, a uniform simply supported
Euler-Bernoulli beam of finite length 1., with an attached
mass M, at x = L. is acted upon initially at time t = Os, by
mass M over fixed length € of the beam with a specified
constant velocity v. The load is in contact with the beam
throughout the motion.

The goverming equations describing the vibration
behavior of the uniform non-initially stressed Euler-
Bernoulli with an attached mass M, at the end x = L but
traversed by a umiform partially distributed moving
mass M

4 2
EI%+ maat—?: F(x, 1) (1)

Where, E the 1s the modulus of elasticity, I 1s the second
moment of area of the beam’s cross-sectional, m 1s the
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Fig. 1: Diagram of the Euler-Bernoulli Beam with masses

mass per unit length of the beam, y 1s the deflection of the
beam, x 1s the spatial coordinate, t 1s the time and F(x, t) 1s
the resultant applied force.

The resultant applied force per unit length F(x, t) is
defined as

e |

2
M - 1s the mass of the moving load.
g - 1s the acceleration due to gravity.
£ - 1is the fixed length of M.
{ - is the distance of load M along the length of the
beam = vt+ &/2.
The differential operator iz according to Adetunde
6t2

(2003) and Akinpelu (2003) is defined as

o & & &
Gy 2 iov i v ()
ot ot Oxat O0x
H (x) it the Heaviside function such that
0 <0
H (x) = * (4)
1 x>0

The goverming equations describing the vibrational
behavior of a uniform non-initially stressed Euler-
Bemoulli beam with an attached mass M, atthe end x =T
becomes

(3)

4 2
EI% Mg MZY oy YOy

M@ y_1
at e ot X3t o’

e g) e s

Subject to the following boundary conditions:

960

y=0atx=0 %:0 atx=1L (6)
2 %}
M2 —oatx=rn, m12Y M, Y _patx=1
ax o tad

The corresponding initial conditions are

y(x 0)=0,y(x0)=0 (8)

SOLUTION TO THE INITIAL-BOUNDARY
VALUE PROBLEM

Assumed a solution in the form of a series
(Esmailzadeth and Gorashi, 1995, 1994; Adetunde, 2003;
Alanpely, 2003)

yx, ) = Ty IT) ©
Where y(x) are the known eigen functions of the beam,
T(t) 15 a function of time (to be determined) satisfying the
equaion (Esmailzadeth and Gorashi, 1995; Akinpelu, 2003)

y, —Bly,=0 10

B - mh; and %, - {BfEI
' EI m

Where 5] are natural frequencies

(11)

y,(x)=asinP,x + beosPx + csinh B;x + dcoshB;x (12)

e., the solution to Eq. (10) and a-d are constants
coefficients.
Assuming that the resultant applied force 1s

Fix,t)= iyl ()W (1) (13)
and substituting Eq. 9 into Eq. 2, 5, we have
EIZ: v T+ mzy, GO =
1{Mg - Miy, (O~ 2MVZ”1:yl wro-

H{X cr j
(=

MV? Dy, (0T, (1)

1=1

Z Y00,
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Multiply both sides of the RHS of Eq. (14) by y;{(x) and taking the definite integrals of both sides along the length
L. of the beam with respect to x, we have

,ngyj(x)[H[x - g+§} - H[x - %de - Mi"[‘l(t)jy](x)yl(x)H[xf g+a - H[x . ;def 2MViTi 0]

!ymx)yf(x){H(xajH[xcjﬂdxMW;Tﬁ)!yJ(x)yF(x){H[xa+jH[xcjﬂ—;wi(t)!yj(@yi(x)dx
(15)

Evaluation the first definite integral in Eq. 15 by carrying out integration by part with respect to x using the following
two properties of singularity function

xl
IXJ(X)S(X—XI): x,(x,),provided x,<X <X, (16)

x0

Hence
%(x—xl)zﬁ(x—xl) (17)

Similar arguments to second, third to fifth definite integral in (15) hence evaluating the integrals using Taylor’s series
expansion and applying orthogonality properties of the characteristics function yj(x) to the RHS of (15), we finally obtain

() = Mg{yi (€)+ ;yl”(e)} - MZT (t){yxe)yj @+ ey @ oo y1<e)y§1<e>}
EMVi'Ti (t){yf (©)y(e)+ j—i[y}”(e)y] (@ +2y' Yy E+y @y (e)}} (18)

-MV* Z“Ti (t){}’,u (€y,(e)+ %[yﬁ" (e)y,(e)+ 2y (e () +y &y, (E)}}

Substituting Eq. 18 mto the RHS of Eq. 14 we have

EI;yiv T O+ m;)ﬁ (x) T, (t)= ;yl(x){—Mg {y, (€)+ %yfl(e)}
S 05050 S [ 05,0 O8O 5,0 (e)]}

. (19)
ZMVZW{Y‘I @y @+ 3@ @ ey @iy <e>]}

© .
MV, (t){yﬁ' @y,E+ o[y @+ 25 @i+ yf(e)yjl(e)]}
1=1
Considering Eq. 10 and 11, then Eq. 19 becomes

961



J. Eng. Applied Sci., 2 (5): 959-965, 2007

> (x){mi(t) +mAT (1) + Mg{y, (£)+ j—;+ yF@)ﬂ +
MY Ty, ey @)+ Sy ey ) + 2yl T + v @yl |+
= = (20)

MVD'T, (t){yﬁ (©)y,(e)+ %[yf“ (©)y, () + 2y )y e) +yl(ey] (eﬂ} +

MV? ZI:T, (t){yin (€)y,(e)+ %[yﬁv (€)y, () + 2yf”(e)y§(e§ +y! (e)yf(eﬂ} -0

The Eq. 20 must be satisfied for arbitrary yi(x) and this possible only when the expression in the curl bracket is equal
to zero. Hence

.e 2
mT(H)+ mAXT, () + Mg{yl () + §+ y! (e)} +

MZT (t){yi ©y,(e)+ %[yf‘ ©y,(€) + 2y, E)yj(E) +, (e)y}‘(ei]} o

+2MVZi<t>{in<€)y] @+ [ emE i@y yf(e)y?(eﬂ}

~MV’ ZT (t){yﬁ(e)yj ©+ %{yf(e)yj (€) + 2y (©y)(€) + yF(e)y}I(eﬂ} =0

The system of Eq. 21 is a set of coupled ordinary second order differential equations and it 1s easily observed that
a numerical approach is required to solve it.
The eigen functions v,(x) for the present configuration is

Y.(x) = sin 2 4 B sinh 35 (22)
L L
1=1,2, 3, - n
Where p = sina, s
" sinha,
a, are the roots of the simply supported transcendental frequency equation
. . MM, .
Cosa, sinha, — Sina, cosha, - ——=sina,sinha, = 0 (23)

3
i

la

We obtain the set of exact goverming differential equation for the vibration of the beam by employing Eq. 22
and evaluating the exact values of the integral in Eq. 15 and we finally obtain
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m (0 + mA/T (1) = { ZMgL[ oo

1

+Bsmh asmh } +
L L

;i(t){ﬁ{cos(a a ) sm(a );l - {ﬁ{cos(al + aJ)%sin(a1 + aj)%ﬂ-s-
e(ﬁ%—if){a' {cos(l - aj)%sin(l -a,) (;f) + cos(1+ al)%sin(l + al)(f)ﬂ +

2 Ssin@ —a)S Sy S R o) Ssinha —a)=
a[cos(ai aj)Lsm(a1 a])2L+cos(ai+aj)Lsm(al+a])2L}+E( _a)[cosh(a a) smh(a a;) }

B

€ +a;)

C . S
cosh(a. +a. )=sinh{a +a.)— |+ +
{ (@3 b omh, J)2L}

2MVa, ZT (t){(aa)[cos(al -a, )%sin(a1 - aj);l - {e(airaj){cos(a +a )L sin(a, +a,) L] +

-

_ LB S in— €)
( 2+a?)[a[cos(l aJ)Lsm(l a;) oL

+cos(l+a )

Sln(1+a)( L)}_ (24)

c . IS c . S
a|cos(l-a)=sin(l—a )—+cos(l+a )=sin(l+a )— | [+
;| cos( ,)L ( J)2L { ,)L ( J)QLH

BL
(a, —a;)

B'L
(a,

MVZa ZZT(t)

1=1

c . 5
cosh{a. +a)=sinh{a. —a.)— |-
[ (a; J)L (& J)ZJ

LB .. (-2
———|a |cos(l—a ) =sin(l—a.
a2+a2){ [ ( ])L -2 2L

-

(
€)
{cos(l a)—sm(l a,) oL

LB
(&, —a;)

BL

(&, +a,

S . €
cosh(a. +a )=sinh{a. +a.)— |-
{ @ ’)L @ ’)ZL}

Note for the case a = a we replace the expression

a e
b 1
yZL

mvolving

da —4a,

i i
To solve Eq. 24,
numerical method, but 2 interesting cases are to be

tackled.

recourse can be made to a

Case I: The moving force non-imitially stressed Euler-
Bermoulli beam: A moving force problem is one in which
the inertia effects of the moving load are neglected and
only the force effects are retained. This is done in Eq. 24
by neglecting all the terms on the right hand side of the
later except the first term 1n the first curly bracket 1.e., by
neglecting all the terms apart from the first term on the
right hand side of Eq. 24.

G
+cos(l+a )=
( ‘)L

963

{cosh(a -a )—smh(a aj);}}

€ L -
{(aa){cos(a a) sm(a )2J+{(ai+a]){cos(a a) sm(a aj)ﬂl+

(=)

=
+
L}

sin(1- a,)

c . IS
+cos(l—a )—sin(l-a )— ||+
( I)L ( ,)2LH

{cosh(a —-a )—smh(a —a, )LE

Case II: The moving mass non-imtially stressed Euler-
Bernoulli beam: This is the case in which both the inertia
effect as well as the force effect are taken into
consideration. The entire Eq. 24 1s the moving mass
problem.

To obtain results, an approximate Central difference
formulas were used, for the derivatives in Eq. 24 for both
cases (cases I and II). Thus, for N modal shapes, Eq. 24
are transformed to a set of N linear algebraic equations,
which were solved for each interval of time. Regarding the
definition of approximation invelved, in order to ensure
the stability and convergence of the solution, sufficiently
small time steps have been utilized.

Computer program was developed and the
following numerical data which are the same as those in
reference (Esmailzadeth and Gorashi, 1995, 1994,



J. Eng. Applied Sci., 2 (5): 959-965, 2007

Table 1: Variation of the lateral displacement, ¥ (x, t) of the non-initially-
stressed simply supported Euler-Bernoulli beam carrying a lumped
mass as its end x = 1. and traversed by moving force. For t= 0.5
s = 0.1 and various values of M

Length of  Yp (x,) Yr (%0 Yr (x,0

the beam For For For

X (m) M=7.04kem! M=80kgm! M=10kgm™
1.4644 -2.6068E-03 -2.9622E-03 -3.7028E.03
2.2788 -7.9777E.03 -9.0645E.03 -1.1133F-02
4.2481 -1.1664E.02 -1.3255E.02 -1.6569E.02
5.8575 -1.0316E.02 -1.1723E.02 -1.4654E.02
7.1215 -5.6476E.03 -6.4177TE.03 -1.3315E.02
8.5353 -8.4752E.04 -9.6310E.04 -1.2039E.03
9.9501 -7.4436E.04 -8.4588E.04 -1.0573E.03
Table 2: Variation of the lateral displacement, Yz (x, t) of the non-initially-

stressed simply supported Euler-Bernoulli beam camving a
lumped mass at its end and traversed by moving force. Fort =1.0
s£=0.1 m and different values of M

Length of Y (k1) Yr (x.1) Yr (0

the beam For For For

X (m) M=7.04kgm™! M=80kgm! M=10kgm™
1.4644 -2.6069E-03 -2.9624E-03 -3.7031E-03
2.2788 -T.97E-03 -2.0664E-03 -1.1333E-02
4.2481 -1.1667E-02 -1.3251E-02 -1.6574E-02
5.8575 -1.0322E-02 -1.1729E-02 -1.4666E-02
7.1215 -5.6546E-03 -6.4259E-03 -8.0325E-03
8.5353 -8.5203E-04 -2.6823E-04 -1.2103E-03
9.9501 -7.3755E-04 -8.3813E-04 -1.0476E-03

Table 3: Variation of the lateral displacement, Y5 (x, t) of the non-initially-
stressed  simply supported Euler-Bernoulli beam carmrying a
lumped mass at end x =L and traversed by moving force. For

2= 0.1 m and different values of t=0.5s,t=1.0s,t=1.5s and
M=7.04kgm™!
Length of  Yp (x,) Yr (%0 Yr (x,0
the beam For For For
X (m) M=7.04kem! M=80kgm! M=10kgm™
1.4644 -2.6068E-03 -2.6069E-03 -2.6075E-03
2.2788 -7.9777E-03 -7.9784E.03 -7.9795E-03
4.2481 -1.1664E-02 -1.1667E-02 -1.1669E-02
5.8575 -1.0316E-02 -1.0322E-02 -1.0323E-02
7.1215 -5.6476E-03 -5.6546E-03 -5.6556E-02
8.5353 -8.4752E-04 -8.5203E-04 -8.5240E-04
9.9501 -7.4436E-04 -7.3755E-04 -7.3722E-04

Table4: Variation of the lateral displacement, Yy, (x, t) of the simply
supported non-initially -stressed simply supported Euler-Bernoulli
beam carrying a lumped mass at x = L traversed by moving mass.
Fort=0.5s and £ = 0.1 and different values of M

Length of  Yp (x,) Yr (%0 Yr (x,0

the beam For For For

X (m) M=7.04kgm™! M=80kgm! M=10kgm™
1.4644 -8.3230E-07 -8.3550E-07 -8.3330E-07
2.2788 -8.8780E-07 -8.8220E-07 -8.8600E-07
4.2481 -1.7828E-06 -1.1141E-06 -1.0011E-06
5.8575 -1.2603E-06 -1.2606E-06 -1.2604E-06
7.1215 -9.4010E-07 -9.4090E-07 -9.1100E-07
8.5353 -3.2500E-07 -3.2410E-07 -3.2470E-07
9.9501 -4.3400E-07 -4.3780E-07 -4.3690E-07
Adetunde, 2003; Akinpelu, 2003) were used for the

purpose of comparisons E = 2.07*10"N m™ [=1.04*
10-6m4, V=12kmh™, m=70kg, g=9.8ms™'2, M= 7.04,
and 10 kg m™, t = 05, 1.0, 1.5 sec, L=10,£=01
and 1.0 m.

Hence we have the Table 1-7 of results.
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Table 5: Variation of the lateral displacement, Ym (x, t) of the simply
supported non-initially-stressed BEuler-Bemoulli beam carrying a
lumped mass at x =1. and traversed by moving mass. Forz =0.1
m and different values of t =055, t=1.5sand M=7.04 kg m™"

Length of  Yp (x,t) Yr (x,0 Yr (x,0

the beam For For For

X (m) M=704kgm’ M=80kgm! M=10kgm™'
1.4644 -8.3230E-07 -1.6125E-06 -2.4184E-06
2.2788 -8.8780E-07 -1.7199E-06 -2.5791E-06
4.2481 -1.7828E-06 -3.4535E-06 -5.1794E-06
58575 -1.2603E-06 -2.4416E-06 -3.6615E-06
7.1215 -9.401E-07 -1.8212E-06 -2.7314E-06
8.5353 -3.2500E-07 -6.2970E-07 -9.4420E-06
9.9501 -4.3400E-07 -8.4560E-07 -1.2683E-06

Table é: Variation of the lateral displacement, Ym (x, t} of the simply
supported non-initialty -stressed BEuler-Bernoulli beam for different
values of £ = 0.1 and 1 m against time t, and M = 7.04 kg m™!

Time t(s) Ym{X,t) Fore=0.1m YmX,) Fore=1.0m
0.48 -8.3230E-07 -1.2731E-06
0.86 -8.8780E-07 -1.3278E-06
1.29 -1.7828E-06 -1.17409E-06
2.15 -1.2603E-06 -1.5588E-06
2.15 -9.4010E-07 -1.5137E.03
2.58 -3.2500E-07 -3.1861E-07
3.01 4.3400E-07 5.8588E-07

Table 7: Variation of the deflection, Yy (x, t) of the simply supported non-
initially-stressed Euler-Bernoulli beam carrying a lumped mass at
x =L and traversed by moving mass. For£ =0.1m, t = 1.0 s and
different values of M

Length of  Yp (3t Vr (L) Y (34,0
the beam For For For
X (m) M=704kgm™! M=80kgm! M=10kgm!
1.4644 -1.6125E-06 -1.6145E-06 -1.6187E-06
2.2788 -1.7199E-06 -1.7163E-06 -1.7089E-06
4.2481 -3.4535E-06 -3.4582E-06 -3.4682E-06
5.8575 -2.4416E-06 -2.4417E-06 -2.4421E-06
7.1215 -1.8212E-06 -1.8218E-06 -1.8228E-06
8.5353 -6.2970E-07 -6.2910E-07 -6.3310E-07
9.9501 -8.4560E-07 -8.4650E-07 -8.4830E-07
DISCUSSION

The dynamic response of non initially stressed finite
elastic Euler Bernoulli Beam with an attached mass at the
end x = L but arbitrarily supported at the end x = 0 to
uniform partially distributed moving load have been
analyzed.

Table 1 and 2 were presented for the case I ( 1.e,
moving force problem). In particular i Table 1 are shown
the deflections of the system for t = 0.5 sec, e = 0.1 m and
various of M. Table 2 contams similar results but for t =
1.0sec, € = 0.1 m and various values of M.

Table 3 and 4 shown the variation of lateral
displacement of the non-imtially stressed Euler Bernoulli
beam carrying a lumped mass at x = L and traversed by a
moving mass (i.e., case IT problem) for (i) t=0.5 sec, € =
01m, (n)t=15sec,e=01m.

Table 5 shows the variations of displacement of the
non-initially stressed simply supported Euler Bernoulli
beam carrying a lumped mass at x = L and traversed by a
moving force (Case I) for £ = 0.1 m, at different value of
timet=0.5, 1.0and 1.5 sec, when M = 7.04 kg.



J. Eng. Applied Sci., 2 (5): 959-965, 2007

Table 6 shows the variations of deflection of the

simply supported non-initially stressed Euler Bernoulli
beam carrying a lumped mass at x = L and traversed by a
moving mass (Case II) for £ = 0.1m, at different value of
time t= 0.5, 1.0 and 1.5 sec, when M = 7.04 kg.

Table 7 shows the variation of deflection of the
simply supported non-imtially stressed Euler-Bernoulli
beam for different values of £=0.1 and ¢ = 1.0 m, when
M=7.04kg.

CONCLUSION

From Table | and 2 it is clear that the response
amplitude of the moving force problem of non-initially
stressed increases at mass of the load M mncreases.

From Table 3 and 4 it was observed that the response
amplitude of the deflection increases as M increases.

Table 5 depicted the behaviour of the deflection as a
function of time t, clearly it was shown that the response
amplitude increases as tume t increases. Furthermore
Table 6 depicted the various value of the deflection of the
beam against time t, for €= 0.1 and € = 1.0 m. Tt was found
that the amplitude deflection decreases as £ increases.
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Comparing Table 1-4, it was observed that the
response amplitude due to the moving force are greater
than those due to the moving mass for non initially
stressed Euler Bernoulli beam.
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