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Abstract: Tn this study, we describe the improvement of the in-depth resolution of SIMS analysis. So, an
algorithm post-erosion 1s used in order to deconvolve some simulated and real SIMS profiles. The simulated
profiles are chosen so that they correspond to real cases encountered by the SIMS analyst and clarify what
can be expected from the method. The real SIMS profiles are obtained by analysis of delta-layers of boron-
doped silicon in a silicon matrix, analyzed in a Cameca Ims6f at oblique angle incidence. Tt is shown that the
m-depth resolution 1s mmproved by a mean factor, in almost of cases, supper than 3 and the shape of both
profiles experimental and simulated 1s retrieved mn a very satisfactory way.
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INTRODUCTION

SIMS, secondary ion mass spectrometry, is the most
sensitive of the techniques for surface analysis. One of its
most mportant applications 1s the characterization of
materials with detection limits at the part per million and
part per billion levels (Kawashima et «f, 2004,
Boulakroune and Berrabah, 2001). Tts provision of
compositions-depth profiles has had an enormous impact
on the evaluation of thin films and surfaces coatings.
Concentration-depth profiling by SIMS of dopant in
semiconductors has become essential in the evaluation of
the various stages in semiconductor processmg. The
techmque 18 now used widely for quality control.
However, the SIMS technique 1s a destructive one, also
the material is never removed layer by layer as would be
required for an ideal analysis. A number of factors can be
responsible for the degradation of the depth profiles,
including ion-induced surface topography, collisional
mixing, preferential sputtering, ion implantation,
segregation and diffusion (Aitkaki ef al., 2002). Also, after
ion bombardment of smooth surfaces, other surface
features can appear which contributes to an uncertainty
as to the precise location of the reference surface and
hence also to the depth profiles (Shao et af., 2004). Thus,
care 1s needed in mterpreting the results from sputter
profiling which can be both material and beam dependent.

The depth resolution obtained in SIMS depth profiles
15 similar n concept to that obtained in depth using the
other surface analysis techniques relying upon sputtering
to remove successive surface layers. The depth resolution

of SIMS profiles i1s degraded by poor instrumental
alignment and sample roughness (Hofmann, 2001;Wu,
2006). However, even if perfectly flat samples are analyzed
with an ideally aligned system, some deviations from the
true profile can occur. The precise mechamsms of the
profile-broademing effects observed are, generally, result
from the collision cascade induced in the sample surface
by the bombarding primary ions. As long as the
bombardment does not produce any micro-topography
roughness, the depth resolution should remain a function
of the primary ion energy only (Yang and Goodman, 2006).

In a magnetic sector instrument at low primary
beam energy, the SIMS depth resolution in silicon
samples 13 governed mostly by the collisional mixing and
in the case of an oxygen primary beam by the
incorporation of the primary oxygen ions in the matrix of
the sample (swelling) (Gautier et al., 1996). Those
phenomena which are responsible for the artificial
broadening of the profiles, are inherent in the
measurement process and can only be limited by
improving the performances of a SIMS instrument. Owing
to well-known SIMS limitations the measured profiles are
broader than the actual profiles, especially at the decaying
part. Furthermore, the SIMS profiles exhibit an energy-
depend shuft (Herzel er al, 1995, Shao et al, 2004,
Hofmann, 2001; Wu, 2006). These linitations can be
reduced by lowering the primary energy, but this
increases the Moreover, the
development sophisticated
instrumentation might give rise to an increase m the
skills of SIMS operators, which is already very high

measurement time.

of more and more
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(Gautier et al., 1996). Fortunately, the deformation of the
profile by the measurement, as well as it shift, can be
partly undone by a mathematical procedure called
deconvolution. Deconvolution will not replace either a
good experiment nor instrumental improvements which are
obviously the only way toward the best resolution, but. it
allows better depth resolution to be reached from a careful
analysis. A deconvolution procedure can therefore be
used in order to retrieve the original signal, blurred by a
linear and invariant Depth Resolution Function (DRF).
The aim of this study 1s to present results on the
mmprovement of SIMS in-depth resolution. The first step
of this work is the determination of the response system
DRF in the case of boron-doped silicon in a silicon matrix,
analyzed in a Cameca Ims6f at oblique angle incidence and
fitted this function with an analytical expression initially
proposed by Dowsett e al. (1994). Then, we have used
this analytical depth resolution for the implementation of
SIMS  profiles sunulation, we have performed the
deconvolution of simulated profiles in order to test the
possibilities of the algorithm. Finally the deconvolution of
boron multilayer profiles is presented.

IN-DEPTH RESOLUTION

Definition and measurement: The in-depth resolution
characterizes the precision of a profile. Roughly speaking,
1t 18 the range m umts of sputtered depth which limits the
knowledge of a variation in composition of a sample. This
corresponds to the measured interface width when
sputtering through an atomically sharp A/B mnterface. The
generally accepted definition of the depth resolution Az
is the sputtered depth resolution between 84 and 16% of
the plateau intensity of the analyzed component. This Az
(84-16%) has been used by the majority of authors and 1s
recommended by IUPAC and the ASTM- E42 committee
(Gautier et al, 1996, Dowsett and Chu, 1998, Hofman,
1999; Dupuy, 1994). At this stage, the definition of Az is
somehow arbitrary and purely phenomenological. It
mainly severs for comparison of depth resolution data
obtained in different works and by different authors. Only,
in the case of a Gaussian function the mathematical
meaning is well defined by Az (16 - 84%) = 20, or more
exactly Az (15, 87-84, 13%) = 20, where 0 is the standard
deviation of the Gaussian; the shape of the depth profile
of the sharp A/B interface is an error function. One notes
that the derivative of the normalized sharp interface profile
15 the resolution function. Other phenomenological
description consider that the depth resolution can be
estimated by means of the Full Width at Half Maximum
(FWHM) of a peak-shaped profile, which corresponds to
2.3350. (Herzel et al., 1995, Gautier ef al., 1998, 1997).
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These notions are not sufficient enough, because the
Collisional mixing not only responsible for a
broademng of the real profiles, but also for the asymmetry
which 1s represented mostly by an exponential-like tail
(Hofmann, 2001; Gautier et al., 1996; Dowsettet al , 1994).

i

FROM THE IN-DEPTH RESOLUTION TO THE
DEPTH RESOLUTION FUNCTION, DRF

Depth resolution function: In principle, SIMS response
function (or depth resolution function) can be obtained
by profiling a single ideal impurity, d-layer, grown in a
substrate material. However, such a &-layer is an
abstraction and even if it were not, there could be no
means to recogmze it. A measured response function will
have a shape that is determined by a mixture of sample
dependent and SIMS related effects. Thin layers of an
adequate quality for response function measurement at
probe energies above about 2 kev can be obtained
(Dupuyet al., 1994, Gautier et al, 1998). But sample
related structure becomes progressively a more sigmficant
part of a profile as the energy is reduced. This structure
can result from steps in the d-layer across the analyzed
area, the statistical distribution of atoms about the 1deal
depth, surface segregation during growth and finite
diffusion; the contribution of these phenomena provides
the Gaussian and exponential shape into the measured
DRF.

The resolution function 1s a specific function that has
to be determimned for each set of experimental conditions.
In the case of a SIMS experiment, the DRF changes each
time the primary beam energy, the impact angle, the matrix
or the impurity under investigation changes. In the case
of the SIMS analysis of boron doped layers of silicon
under O, primary beam and with an oblique incidence
angle (below 30°), the collisional mixing 1s the responsible
for a degradation of the depth resolution, that can be
expressed in terms of a convolution of the original profile
with a depth resolution function, DRF. This DREF,
represented by the function h(z), is the normalized
response of a delta-doped layer when the analysis
process 1s linear and invariant, that is when the resolution
function does not vary with depth, which is true for
depths ranging from = 150 and 8000 A® (Gautier ef al.,
1996, 1998, 1997). A real concentration distribution x(z) will
result in a measured profile y(z) defined by:

+eo
y(z)= j x(z"h(z— zNdz' + v(z) (1)

Where v(z) 1s the noise which adds independently to the
perfect measured profile. The linearity of the process is



J. Eng. Applied Sci., 2 (5): 808-823, 2007

verified so long as the concentration, of the boron-doped
layer, stays below the dilute limit (Gautier ef al., 1996).
Thus, the assumption on which SIMS analysis can be
described in terms of the convolution of an initial profile
with a DRF that depends on the instrument and the
analysis conditions seems to be valid, as has already been
pointed out by Dupuy et al. (1994).

It 1s easy to see that if the mput signal 13 a delta
function, then v(z) = h(z). The DRF can thus be found
from the measurement of a delta function. This function
has to be determined for each specific combination of
matrix, impurity and experimental conditions. From a
practical point of a view, the elaboration of a delta-doped
structures of uniformly doped layers with ultra sharp
interfaces is better controlled (Dupuy et al., 1994) so that
is possible to get the DRF from the measurement of a
Rapid Thermal Chemical Vapor Deposition (RTCVD)
grown sample, which can be supposed to be very abrupt
and very thin. The convolution/deconvolution process
can be performed with a numerical DRF, experimentally
determined. Ancther way is to use an analytical function
that perfectly fits the experimental data; this method leads
to some advantages (Gautier et af., 1997, Dowsett and
Collins, 1996).

The sampling internal of the analytical DREF can be
easily adjusted to match that of other experimental
profiles to be deconvolved, especially where the
erosion rate is not exactly the same as in the mutial
DRF measurement.

If the DRF is experimentally measured for a lot of
energies, 1t 1s possible to determine the variation of
the fitting parameters, with respect to the energy: A
better determination of these parameters for a given
energy can be obtained by checking a continuity
criterion.

The possibility of describing the depth resolution
with an analytical expression, via its moments, makes
the performance of the analysis more comparable for
different users working with different apparatus.

The noise mn the DRF is smoothed out (we can
assume that the noise is a consequence of the
measurement and not an inherent parameter of the
DRF). Thus some of the artifacts mn the result of the
deconvolution can be avoided.

One is free to choose the extent of the analytical DRF
so that the fitting covers only the experimental data
(in that case, the dynamic range of the analytical DRF
is the same as the experimental one) or to extrapolate
the DRF to sumulate a very large dynamic range.

In the first case, the use of an analytical function is
just a smoothing of the analytical data. Tt is as well the
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case where there is no reason why the analytical form
should not be implemented in a convolution or in
deconvolution scheme, as claimed by Dowsett and Collins
(1996). In this sense, it is assumed that the sample is a real
data layer (MBE-grown sample are known to be very
abrupt) and that the entire response is due to the
measuremnent process.

When looking at a SIMS profile of a delta-doped
layer of boron m silicon, we notice that it comprises an
exponential trailing edge and a Gaussian-like rounded top.
The rising part of a profile 15 often exponential too,
although 1t 18 why we have chosen to implement an
analytical DRF, initially proposed by Dowsett ef al. (1994)
which is constituted by the convolution of a double
exponential with a Gaussian.

expl——) z<z,
Dexp(z) = A. t
-ZO
expl- ) zZ=z,
Aq (2)
and
B 22
Gauss(z) = exp(—-——)
‘JQ.TEGg 262

The result of this convoelution 1s given by the normalized
expression (Dowsett ef al., 1994; Dowsett and Chu, 1998):

" zZ— ZO Og
1 e
h{z)=——
200, + Ag) . ot "
exp(— ] +E)e 0(— J_ \/_ld

3

This DRF can be described by three parameters 4, A,
o, and a fourth parameter z, that represents the position
of the cusp of the double exponential.

Experimental determination of the resolution function:
Figure 1 gives an example of this DRF experimentally
measured and its fitting by the analytical expression in the
range of the available energies and angles. The
experiments have been carried-out with CAMECA Tms6f
apparatus with O, primary ions, collecting the positive
secondary ions. This DRF has been measured in the case
with of a delta layer of 5i:B insilicon at 5.5 Kev/O, and
9.5 Kev / O, in Cameca IMS6f with positive secondary
ion collection. The fitting parameters are not expressed
with respect to the primary ion energy but with respect to
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the pmary ion range, R,, given by the formula (derived
from TRIM simulation using O ions with the same impact
angles (Dupuy et al., 1998):

R p(A®)=50.46 ES®S cos 6 (4)

Where 0 is the implicit angle of the beam and E;, is the
primary energy per incident oxygen ion This
representation has been chosen in order to have synthetic
results taking into account both energy and the angle of
umpact, which are not mdependent in a magnetic sector
mstrument. The variation of Rp, with respect to the
primary ion energy Eg, is illustrated on Fig. 2. The
variation of the fitting parameters when changing the
experimental conditions conforms to the behavior of their
physical homologue. We notice in particular the increase
of 4, and o, with R,, however A, seems to decrease
slightly with Ra(Fig. 3) (Gautier ef al., 1998). Thanks to the
analytical form of the resoluton function, we can

811

determine the mean value of h(z) by the first-order
moment, L, the second-order moment u, represents the
in-depth resolution (Dupuy et al., 1994, Gautier et al.,
1998).

W=z= A‘df A‘u

&)

2 2 2 2
Ha =Gt = Og Jr7\‘cl+7\‘u

Knowing that the » order of the centered moment of a
function is defined as:

+e0
by = J-(zfi)“ h(z)dz (6)

By extrapolating the fitting parameters A, A, and a,, 1s
possible to extrapolate the shape of the resolution
function.
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Fig. 2: Evolution of the primary ion range, R, with the
primary ion energy Ep

Fig. 3: Evolution of the fitting parameters, of DRF, with
the primary ion range R,

THE CONVOLUTION PROCEDURE

The linear convolution: The descretization of the
convolution mtegral (Eq. 1) results in the followmg

equation, written with the matrixial formalism:

N, -1
y(zA)= Z h(kAIX(z— KA |+ v(zA)
k=0

Ny =N, +N; -1

(7

Where N, N, N; and A are, respectively the length
of: the true profile, the resolution function array, the
measured profile and the depth step. The depth step
represents the rate erosion which 1s considered constant.

In this equation, the DRF 1s assumed to be causal, 1.e.,
it corresponds to a delta layer located at z = 0, this does
not corresponds to the physical situation and will shift
the result of the profile.
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Equation 7 can then be rewritten as:

y=Hx+v (8)

Where vectors y, x and v represent, respectively: The
observed profile, the true profile and the noise. The
operator H 18 a Toeplitz matrix constructed from the
descretized resolution function.

The circular convolution: The circular convolution
product defined for the convelution of 2 periodic
functions of N sample’s period is noted:

N -1

Z h(kAJx(z— k)A

k=0

y(ZA)—[ ] +vizA)a )]

Computers can only manipulate vectors of limited
sizes. Therefore, it is necessary to use functions of
finished lengths; this 1s the case of the circular
convolution product. In the linear convolution, the length
of y is N, = 2N-1, on the other hand the Eq. & indicates
that ¥ is of N length. Therefore, to get by the circular
convolution a precisely result similar to the one reached
by the hinear convolution, it 1s sufficient to suppose that
all vectors have a length equal to N, ie,
complete x and H by zeros, so that they reach this
length.  The advantage of the
convolution product 15 to hmit the length of the
convolution calculations to a finished value of points,
without altering the result.

we must

obvious circular

THE SIMULATION PROCEDURE

The simulation procedure can be described as
follows: Analytical functions of different structures are
convolved with the analytical expression of the DRF with
parameters Ay, A, and o, having been determined
previously by fitting the measured profile of a d-layer of
boron m silicon. The simulated profiles are constructed so
that they resemble to a real SIMS analysis of: d-layer,
multi-d-layer, Gaussian functions, rising and failing sharp
functions, etc...and expressed in terms of ion counts per
second. The maximum 1on count of profiles is located in
the range 10%, 10° counts per second. Some Gaussian
noise is subsequently added in order to simulate the real
SIMS analysis. To simulate the noise that comes to be
added to the perfect signal, we are have constructed a
Gaussian noise with a mean value equal to zero and a
standard deviation following the practical relation already
used by authors (Gautier et al., 1998).
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6=17dM (10)

Where M 1s the mean value of this signal.

It 13 necessary to thunk, first of all, about the
generation of pseudo-random signal of a Gaussian
distribution. In fact, the pseudo-random signals are
perfectly determimst signals, but whose the behavior
appears uncertain;, these signals posses an interesting
and very definite statistical properties. Such signals are
generally generated to simulate the random signals and
have a periodic character but on one period, it can be
treated like a purely uncertain signal. For this reason, the
peried must be chosen as long as possible. In fact, the
kind of noise in SIMS analysis is White Poissonian, this
noise 1s weak in the case of pure coating. Moreover, it has
been chosen that the noise 1s White Gaussian with a mean
value equal to zero (i.e., the variation due to the noise,
compared to what could be called a perfect measured
signals and it can be either positive or negative, with a
symmetrical probability distribution function). Brice
have wverified that the construction of a Poissonian
noise that they added to the signal instead of a Gaussian
noise does not lead to any difference i the
deconvolution results. So it 1s preferable to use a
Gaussian noise for several reasons:

The Gaussian noise 1s far easier and faster to compute
than the Poissonian noise.

A Poissonian stochastic variable of the parameter o
will be able to be estimated by a Gaussian law for
SIMS signals of the order of 10° to 10° counts per
second, 1.e. &> (Gautier ef al., 1997, Makarov, 1999).
In the regions where the SIMS signal is meaningful,
it is very unlikely that the measured noise at the end
of the profile represents a major contribution of
the total noise.

Whenever, the number of counts becomes too low
(<lcps) the mean value of the noise has been kept at
unity so that the signal is covered by the noise, just as n
a real SIMS experiment. This corresponds to rather
pessimistic experimental conditions, for the mean level of
the noise at the end of an experimental profile 1s often<1
cps. The noisy profile show a Signal-to-Noise Ratio (SNR)
of 40 dB, which corresponds to credible SIMS analysis
where four decades of signal are available. Here, the SNR
(dB) 1s expressed in terms of the ratio between the power
of the signal and the power of the noise, which
means that:

2
]

v (11)

SNR =10log,
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This results in profiles that are rather similar to what
can be obtained in a real STMS experiment.

The deconvolution procedure: Different methods of
deconvolution exist which offer advantages and
drawbacks. There are: inverse methods based on fourier
transformation and forward methods. Inverse techniques
are very fast but suffer from some essential drawbacks:
They often give a result containing physically unrealistic
negative concentration and high noise levels. Therefore,
the solution 15 not unique and not stable (a little
perturbation m the data can lead to a great difference in
the deconvolved solution). The deconvolution procedure
tries to find a unique solution and to stabilize it with
respect to a perturbation in the data.

The algorithm that we have chosen, for the
deconvolution of SIMS depth profiles, is Wiener
algorithm. This algorithm is member of the set of those
using mverse Fourter transforms, it 15 a flexible algorithm
permitting the deconvolution of profiles with good gains
in resolution and in amplitude.

Equation 8 can be re-written in Fourier space as:

YD = Y(O+N() (12)
Where Y(f) = H(D)X(f) represents the ideal case, which
nonoise 1s present in the measurement (which i1s never
the case).

The system response H(f) is a low-pass filter
(Gautier et al., 1998; Dowsett and Chu, 1998; Hofman,
1999; Cooke et al., 1996, Makarov, 1993; Prost and Goutte,
1984). Its components are thus equal or very close to zero
for frequencies above a certain cut-off frequency f,
(Fig. 4). Components close to f, are very attenuated by the
convolution. Moreover, m the presence of an ill-posed
problem, some components below f, can be very small,
almost null. In this case, the inversion of the convolution
equation will fail for these components. Therefore, it will
have the same effect that the application of a high-pass
filter, what will provoke the amplification of the high
frequencies of the noise which will lead to a very unstable
solution, therefore, the result is a signal drowned in the
noise (Fig. 5). In these conditions, a solution 1s the
application of a filter on the deconvolved signal, in which
this amplification of the high frequencies will be
minimized. One of the simplest manners of this type of
restoration 1s to use the filter of Wiener; it is an extremely
fast deconwvolution because it 1s applied in the fourier
space and requires only a TF and an inverse TF.
Therefore, the problem will be to find the optimal filter
that, when 1t 1s applied to the result of the deconvolution,
will give the result close to the searched input signal X (f).
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Fig. 4 Direct Fourier Transform (DFT) of the resolution
function (a) analytical DRF, (b) experimental DRF

Fig. 5. Brute Deconvolution of a Gaussian profile by
simple mversion of the convolution equation. The
result is a profile drowned in the noise

In other words, one looks for the filter F(f) as:

Xes (f)z‘l%)m) (13)

Where ¥, (f) represents the estimated of the real signal.
Tt remains to define what one says by close to. The most
natural defimtion s the approximation of the estumated
solution X_(f) by least squares with the true solution X(f)
which will lead to minimize the quantity (Schafer et al.,
1981; Barakat et al., 1997).

2

rleest ()= X(D) df (14)

We note that the measured signal Y(f) and the noise
B(f) are completely no-correlated Therefore, the
integral of their correlation product on f 15 null. To
minimize the Bq. 14 while making vary F(f) 1t 1s
sufficient to derivate it with respect to F(f) and to equal
the gotten quantity to zero, that, finally, gives the
estimated solution of Wiener:

_Y(f) 1
1+ 3
|Y(£)

According to the Equ 11, the research of the best SNR (for
real profile where it’s value is unknown) has been done,
in an empiric manner. One tries different values of the SNR
and one takes the one that gives the best result.

RESULTS AND DISCUSSION

Rising and failing sharp functions: The first kind of
rising and failing functions, we have chosen to simulate,
are sharp interfaces. This case is presented in the
technology MOS, (Metal-Oxide-Semiconductors) with a
great control of layer’s deposition (for example LP-CVD or
RT-CVD grown layers) to have abrupt interfaces.

The mathematic formulations of these structures are:
For the increase sharp function we have:

Clz)= AU(z—a)= {? Z: (16)

For the decrease sharp function we have:

C(z) =A[U(z)-U(z - a)] (17)

Where A is the amplitude coefficient represents the level
of the signal and a: Is a shift introduced to the function,
it represents the depth of the beginning of the sharp
interface. We have chosen to make this study with a DRF
corresponding to 5.5 kev/O', primary beam (42.4°
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incidence) because it represents a routine adjustment of
the instrument. Thus, we have convolved our theoretical
profiles with a DRF that has an FWHM equal to 97.83A°
(A=351 A% A,=11.4A° 0,~ 198 A® and o, = 41.88 A°,
where 0} 1s the centered second order moment of DRF). In
the low frequencies of each profile we have added the
noise with an SNR = 35 dB, for the failing sharp function,
the noise affect the pure signal at the end, however for the
other signal, the noise is localized at the beginning of
the signal.

Figure 6 (a-d) show both sharp mterfaces functions
for A = 10" ¢ps and a = 800 A° and the result of the
simulation of the SIMS analysis corresponding to a 5.5
kev/O," primary beam in a linear and a logarithmic scale. Tt
turns out that the abrupt interfaces became graduals,
spread in depth following an error function. Hollowing, it
is the effect of the collisional mixing in return for the
parameter 4, The usual Az (16-84%) definition can, of

course, be applied to any profile at a sharp interface of a
single-layer structure when the maximum and the minimum
of plateau values are attained. However, it’s simple and
well-defined meaning for a Gaussian DRF (Az = 20) 15 lost
in the case of a non-Gaussian resolution function. For
example, the exponential decay generally obtained due to
collisional mixing within a mixing length w shows that
Az{16-84%) = 1.6w (Hofman, 1999). With our DRF; Az(16-
84%) = 77.88 A° for the failing sharp interface and it equal
to 76.03A° for the rising sharp mnterface. Indeed, we nearly
have the same resolution n depth, with a difference of
1.85A°. Consequently, the width of the mixed zone 1s, 1n
the two cases, equal roughly to w = 47A°.

The degradation resulting from the measure of a sharp
function, either rising or failing, carries essentially on the
increase and the decrease part of the signal, which appear
as exponential tails on the measured profile. The
deconvolution leads to a significant improvement of the
SIMS analysis (Fig. 6 a-d). In particular the sharpness of

Fig. 6: Results of the deconvolution of SIMS sharp interfaces profiles: -Rising sharp mterface: (a) Linear scale, (b)
logarithmic scale. -Failing sharp mterface: (¢) Linear scale (d) Loganthmic scale. Some oscillations appear on both
scales. The exponential behavior of the measured profile has been removed
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different interfaces is retrieved and the quality of the
signal is mostly improved. In this type of sample, the
means to estimate the quality of the deconvolution 13 to
compare the different in-depth resolutions, characterized
by the Az (16-84%) criterion, of the deconvolved profiles
with those of the measured profiles. The deconvolution
gives the following in-depthresolution for each profile Az
(16-84%) 16.58A%nd Az (16-84%) 18.43A°,
respectively, which gives an improvement by a factor over
of 4.2 for each case. However, on the plateau of each
profile, 1.e., m the ligh level of the signal, some
oscillations appear and at the end of each profile, artifacts
are developed at the low level of the signal. The question
for the STMS analyst is to know whether these disruptions
(artifacts, oscillations) are to be considered as physical
features or as deconvolution features (Gautier ef al.,
1996). We will try to find an explanation of these
phenomena later.

Error functions: The second kind of rising and failing
functions we have chosen to simulate are error functions,
often encountered when a diffusion process is involved.
A Fickian diffusion of an abrupt interface results in an
error function-like profile. The general formulation of the
functions that we have constructed is:

{uer{

Where C; 1s the amplitude coefficient used to adjust the
level of the signal and 0, characterizes the abruptness of
the profile. The total profile is constituted by a rising and
a failing error function. Figure 7 Shows the function for
0, = 28 5A° and the result of its convolution with a DRF
corresponding to a 3.5 kev/O,” primary beam m a linear
and a logarithmic scale.

We notice also that, the primary ion range of the
analysis characterized by 2R, (Gautier ef al., 1996) in our
case R, = 74 A°, the transient respense influences on the
first rising part, but not in an ominous manner, on the
other hand in the second part of the signal, the primaryion
range 1s drowned in the noise, this it 1s an advantage for
this kind of profiles (1.e., rising functions). Also, in this
figure, it can be seen that the SIMS analysis broadens the
rising and the failing function of each signal and
particularly that the failing error function because the
measured signal 1s governed mostly by the decreasing
exponential behavior of the DRF.

The result of the deconvolution of this signal can be
found in the same Fig. 7. In our case where g, = 28.5 A°,
the signal 1s almost perfectly deconvolved in its rising and

z

‘\/550

Sy

2

Clz)= (18)

816

Fig 7. Results of the deconvolution of error functions
profiles: (a) Linear scale, (b) Logarithmic scale.
Doted line: original profile. Plain line: Deconvolved
profile. Noisy line: Measured profile. The
deconvolution 1s perfect: On the linear scale, the
original signal can not distinguished from the
deconvolved signal. Some oscillations are visible
on the logarithmic scale

failing parts. In the region where the signal 1s constant,
some oscillations are visible in a linear scale, they are
characteristic of the result when the process of
deconvolution reaches its limits, that means; when the
profile to recover contamns too high frequencies to be
restored by the algorithm. On the other hand, in
logarithmic scale (Fig. 7 b) artifacts are developed in the
low levels of the signal, where the signal is comparable to
the noise are normal and unavoidable. There are due to
the local variations of the mean value of the noise. It turns
out that the depth resclution is mmproved in a very
satisfactory way, this is justified by a completely
restoration of the measured profile which 1s close to the
original profile.
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Fig. 8 Results of the deconvolution of Gaussian profiles:- s, = 10A%: (a) Linear scale, (b) Logarithmic scale; - s, = 120A%:
(¢) Linear scale, (d) Logarithmic scale; The deconvolution is perfect in the second profile (s = 120A°) the original
profile can not distinguished from the deconvolved signal, a small peak is visible on the right side on

logarithmic scale

Gaussian profile: The Gaussian profiles which often
appear after a diffusion process, are modified by the SIMS
analysis, are represented on Fig. 8 (a-d). It 13 easy to see
that when the standard deviation oy of the original profile
to be analyzed 1s weak compared to the standard
deviation of the DRF, it 1s very difficult to estinate o from
the SIMS analysis. For higher values of oy, the result of
the convolution 1s characterized by a broadening mostly
governed by o, with rising and failing tails governed by
A, and A, In any case, it is possible to precise the
analytical shape of the measured profile (Gautier et al.,
1996, 1997).

The DRF is represented by h(z) which consists in the
convolution of the double expenential function Dexp
(z) with the Gaussian Gauss (z). We have from Eq. g,
the analysis of a real concentration distribution

x(z) 18 y(2) = h(z)*x(z)

Which we can develop as:
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y(z) = [Dexp (z)*Gauss (2)]*x(z) (19)
This expression can be written as:
y(z) = Dexp(z)* [Gauss(z) *x(z) (20)

Now, in the case where x(z) 15 a Gaussian,
[Gauss(z)*x(z)] 18 also a Gaussian with a standard
deviation.

112
ST TSR Tig

(21)

The result of the convolution of a Gaussian with the
DRF has thus the same analytical shape as the DRF, that
1s the result of the convolution of a double exponential
Dexp (z) with a Gaussian characterized by its standard
deviation o;. An important property of the resolution
function is the conservation of the centered second order
moment m its quadratic form, even if the functions under
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consideration are not Gaussian, it can thus always be
written as:

2

Sh ~Sh TS bRy 22)

Where 2 .2 and (2 __ are, respectively, the centered
M>3R DRF

second order moment of: The measured profile, the real
profile and the DRF. In the general case, it 1s theoretically
possible to find the centered second order moment oy
when oy, and 0, are known.

Figure 9 (a) represents the measured centered second
order moment as a function of oy. A good agreement is
found between the o, measured directly with the
convolved function and the o, deduced from Eq. 22. The
mverse operation which consists in finding g5 from oy, 1s
of course limited to the value of 0, not too small compared
to Opge for example, a measured oy, of 109 A® allows to
find oy= 107A°, however, the original oy, = 100A°,
what gives us an error of 7A°. But a measured o,;of 46 A°
allows to find oy = 40A°, the origmal 0, = 10A°, what
gives us an error of 30A° Tt is important to note that when
Oy is not very different from Opg, or even for higher
values, the error made when one supposes that o, = g, 1s
not negligible. One often measures the FWHM, which is
in this case directly proportional to the standard
deviation. This procedure is theoretically not valid in the
SIMS analysis, mostly because of the exponential tail
mduced by the analysis. However, in highest decade of
the signal, the DRF is still mostly governed by its
component, the exponential tail being
predominant when the level of the signal 1s getting low.
We have thus verified that the quadratic additive was
partially respected. We have proceeded the way we had
already done when dealing with the centered second
order moment, by measuring the FWHM of the
numerically convolved functions. It i1s interesting to
note that the property:

Gaussian

FWHM?*,; = FWHM  +FWHM - (23)
Tt is respected also, as it can be seen in Fig. 9b.

Results of the deconvolution of the original Gaussian
profiles with (o, = 10A°, (FWHM); = b 23.36A°) and
(o, = 120A°, (FWHM), = 280.32A°) illustrated on the
Fig. Ba-d, respectively. Tt can be seen that the FWHM of
the measured profiles are completely recovered after
deconvolution.

We call gamn of the deconvolution, the ratio of the
FWHM of the measured profile on the FWHM of the
deconvolved profile (Gautier et al., 1997). Tt gives
directly an 1dea of the improvement of the resolution after
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Fig. 9: a) Evolution of the standard deviation of simulated
SIMS Gaussian profile according to the standard
deviation of the original profile. b) Evolution of the
FWHM of simulated SIMS Gaussian profile
according the initial FWHM of the original profile.
Verification of the theoretical relations given by
Eq. 25 and 26

deconvolution. The standard deviation and the FWHM of
the measured profiles are, respectively (o, = 46.16A°,
(FWHM),,= 107.84A°) and (o, = 128.18A°, (FWHM),, =
299.43 A°). After deconvolution, features of each profile
are respectively (g, =10.36 A°, (FWHM),;=24.20 A°) and
(0,=120.19A° (FWHM),= 280.64A°) wluch gives gains
of deconvolution of 4.45 and 1.06, respectively. One notes
also  that; features of DRF are (0p; = 41.88A°,
(FWHM),er = 97.83 A®). Therefore, we conclude that: it
15 possible to mmprove the in-depth resolution of the
analysis by a factor greater than 4.4 when the origmal
profile is less than DRF. It is still improved by a factor
close to 1 when the measured profile is times larger than
the DRF. To generalize this survey, we have deconvolved
the same set of Gaussian profiles of various o5 previously
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Fig. 10: Plot of the vanmation of the: (a) Measured and
deconvolved standards deviation with respect to
the initial standard deviation.(b) Measured and
deconvolved full width at half maximum with
respect to the vanation of the (fwhm),

simulated. For each deconvolved profile, we have noted
the centered second order moment and the full width at
half maximum. The result can be found m Fig. 10a and b.
These Figures show that the real width of the Gaussian
profile can be restored if the FWHM of the original profile
1s comparable or hugher to the FWHM of the DRF. If it is
narrower, the resolution can only be improved, but the
result is far to the original profile. Brice et al got,
practically, the same results with another algorithm of
deconvolution, what validates this survey.

Two layers separated with an adjustable distance:
Generally, the response of a system is more large that the
structure that one wishes to analyze. In some cases this
width covers two consecutive structures, as two adjacent
delta-layers. It has for result the observation of only one
structure at the time of the measure. We have simulated
the measure of two separated delta-layers of an adjustable
distance to discover the theoretical separation limit
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between two deltas layers. The question of the in depth-
resolution can also be posed in terms of the ultimate
separability: If one comnsiders two very fine layers, what
distance do they have, to be separated, so that the
measure can distinguish each of them? This approach of
the resolution drives to more refined definitions, because
1t 1s necessary to specify the degree of separation of the
two layers.

We use a separability criterion, indicated by the
notation dy, . (Gautier et al., 1996), as being the minimal
distance required between two delta layers, so that the
contrast obtamed by the SIMS profile, blurred by the
noise with an SNR 4, = x dB (Eq. 11) is given by:

I ax

I;Im'm <100 (24)

Clogy ==

max

Where 1., and T, are, respectively, the intensity at the
maximum of the most intensive peak and the intensity in
the valley separating the layers. It is interesting to find the
minimum distance between two delta layers, convolved by
the SIMS DRF and that can be separated by the analysis.
In order to have a general point of view of the separation
power of our analysis, we have constructed a theoretical
samples consisting of two delta-layer separated by an
adjustable distance ranging from 30 to 300A° and
convolved with the DRF, added a Gaussian noise in order
to obtain a signal with an SNR equal to 35 dB.

We have convolved our theoretical profiles with a
DRF that has an FWHM equal to 97.83A° (4,= 35.1A°, 4,
=11.4A° 0,=19.8A° and 0 = 41 .88A°, where o is the
centered second order moment of DRF). The variation of
the contrast according to the distance 1s illustrated on the
Fig. 11a. It turns out that 2 delta layers are separated if
they are separated by >115A° We consider that the
separation of the delta layers 1s perfect when the
convolved curves do not intercept within the dynamic
range investigated by the convolution. In the case where
the SNR is equal to 35 dB, this range extend over four
decades. After deconvolution (of course, with the same
DRF which 1s used for the simulation) the real distance
between peaks and the symmetry have been restored,
indicating that the exponential behavior of profiles has
been completely removed. Besides, the mtensity peaks of
the delta layers have been corrected so that both layers
exhibit the same peaks (Fig. 12a-d).

The wvariation of the contrast, of the deconvolved
profiles, with respect to the distance is illustrated on the
Fig. 11b. The two delta-layers are perfectly separated if
they are initially separated by a distance greater than
60A°, in these conditions and it is still possible to detect
them if they are separated by more than 40A°, two delta-
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Fig. 11: (a) Evolution of the contrast with the distance separating two delta-layers. (b)Evolution of the contrast of the
deconvolved profiles with the distance separating two delta-layers. Improvement of the in-depth resolution by
deconvolution, limit of separation is equal to 40 A®
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Fig. 12: Separation of two delta layers mmtially separated by: (a) 60 A°, (b) 50 A°, (c¢) 40 A°, (d) 35 A°. Dote line: Original
profile, noisy line: Measured profile, plam line: Deconvolved profile
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Fig. 13: Experimental SIMS depth profile of a sample
consisting of five delta-layers of Si:B, 2.5 kev/O,"
(63.1° incidence)

layers separated by 35A° are not separable. In
particular, these results can be considered as good, by
comparison with Brice results (Gautier et al., 1997) by
means of the same separability criterion (Eq. 24) Brice ef
al present a resolution equal to 60A° and the two delta-
layers are completely separated by a distance >90A°.
However, results of Brice are more stable, there are no
small peaks (artifacts) at both sides of the deconvolved
peaks. Cook et al. (1996) present a resolution better than
50A° with a Quadripole instrument with 2Kev/O,"
primary beam at normal incidence.

Real SIMS profiles: multilayer depth profiles: In
microelectronics, component’s dimensions decrease of
one day to the other with the passing of years, therefore
mterfaces in materials are more and more abrupt. Those
results are of an mcreased presence of the high
frequencies in the specter of the real profiles. The survey
of the delta-layer is therefore of an essential interest for
the convolution/deconvelution process. Besides, a delta-
layer represents the smallest structure that one can
simulate or measure. Multilayer structures are also of
great importance of semiconductors devices and so have
become popular as reference materials in sputter profiling,
particularly for the determination of depth resolution as a
function of the sputtered depth (Kawashima et al., 2004;
Hofman, 1999; Gautier et al., 1995).

Figure 13 shows a real SIMS profile, it contains fives
delta-layers analyzed with Cameca Ims6f corresponding to
2.5 kev/O', primary beam (63.1° incidence). The
convolution ratio (Gautier) will be defined as the ratio of
the FWHM of the measwred profile on the FWHM of
DREF. It gives an idea of how difficult it will be to restore
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Fig. 14:Example of expenimental improvement of in-depth
resolution of multi-layer SIMS analysis by
adjustment of DRF parameters (i.e. adjustment of
operative’s conditions). Parameters of the new
DRF: 4,=9.01 A°, A,=1.9A% 5, =89 A%and s, =
12.84°

the measured profile after deconvolution. The closer
to 1 the convoelution ratio, is more difficult the restoration.

The FWHM of each delta-layer 13 equal to
43.8782A°, the one of the DRF is equal to 43.8169A°,
relatively it is a good in depth-resolution, lower to 70A°,
on the experimental plan that is a good measure, however,
one stands in a difficult restoration because the ratio of
the convolution is close to 1, precisely it equals to 1.0014.
This value of the convolution ratio, allows us to test the
validity and the performances of algorithms of the
deconvolution, to have a better restoration of signals.
Figure 14 shows the improvement of in-depth resolution.
In these conditions, the operatives conditions correspond
to a fitting parameters of the DRF that has an FWHM
equal to 30.0A° (4,=9.01A° 2,=1.9A°, 0,=8.9A° and
or = 12.84° It turns out that the resolution is only
improved by a factor equals to 1.34 and the dynamic range
is improved by a factor 1.41. The improvement remains
steady even while changing the operative conditions, i.e.,
lowering of the primary ion energies, in an other word,
that explains the limits of the experimental improvement.
Therefore, one has recourse to use other tools of
improvement, which is the numeric improvement by
deconvolution.
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Fig. 15:Result of the deconvolution of the multilayer
profile consisting of five delta layers. The
deconvolution gives an excellent improvement of:
The m-depth resolution, the dynamic range. All
deconvolved peaks have the same height and are
symmetric i.e. the exponential behavior of the
measured profile has been removed

After deconvolution, Fig. 15, the delta layers are
completely separated, although the SIMS analysis profile
itself yields a poor separation, the shape of the result is
symmetrical for all layers, mdicating that the exponential
features caused by the SIMS analysis are removed. The
FWHM of the deconvolved delta-layers is 14.74A°, so the
FWHM of the measured deltas 13 43.8782A°, which gives
a gamn of deconvolution of 2.97, the dynamic range is
improved by a factor of 4.14. These values are very
satisfactory, mn matter improvement of the quality of
signal, which depend on several parameters: the used
DRF m the deconvolution process, the method of the
deconvolution, the step of sampling and the level of
noise. Besides, the heights of the delta layers have been
corrected so that all layers have approximately the same
height, which the SIMS analysis modified them. As the
previous cases, some artifacts are generated at the end of
the deconvolved peaks, those have an amplitude of about
one to 2 decades greater to the one of the noise. The
mterpretation is obvious, the useful signal to noise ratio
in these zones is very bad, it is difficult to distinguish
between the part of the signal and the part of the noise;
one deducts a difficulty of deconvolving zones of a weak
SNR. Also one notes that, these artifacts appear with
other methods of deconvolution: regularized algorithm of
Van Cittert, Maximum of entropy, etc. (Dowsett and Chu,
1998; Dowsett and Collins, 1996, Makarov, 1999, Schafer
et al., 1981; Barkat ez al., 1997, Mancina ef al., 1997).
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CONCLUSION

The amm of this survey is the improvement of the -
depth resolution of SIMS analysis. Several solution are to
consider, the most classical known is the lowering of the
primary ion energies which seems to be a good solution,
but it 15 limited. That’s why, the development of an
alternative solution 1s needed to predict some SIMS
measures, with better resolutions that the experience
could not reach.

In this study, deconvolution of simulated and real
profiles was considered. The smmulation, based on the
response function of the system, was undertaken. in this
sense, the DRF was determined by analyzing delta-layer
of boron doped silicon m silicon matrix and fitted by an
analytical expression. The results of simulation are in
good agreement with the experience. The real SIMS profile
is a multiplayer of boron in silicon analyzed at 2.5Kev/O",
{(63.1° oblique mcidence).

It 1s shown that the shape of all profile 1s retrieved in
a very satisfactory way, the exponential behavior have
been completely removed, the height of the delta-layers
have been corrected, the distance between peaks and the
symmetry have been restored. The in-depth resolution
has improved by a mean factor supper than 3 in almost of
profiles.

Ideally, what 1s obvious; it is that one can not replace
a good measure by a numerical processing. Reliability and
quality of the outgoing measure remained the essential
requirement for a good result. All as the improvement of
the instrumentation remains a privileged way toward the
ultimate improvement of the in-depth resolution. The
deconvolution comes to be added to the instrumentation
performances and allows to pull the maximum of the
resolution of an experimental profile.

This research shows that the deconvolution of SIMS
depth profiles can be successfully used as a reliable way
of improving SIMS in-depth resolution.
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