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Abstract: This study describes the use of the S-Transform to identify fatigue features in variable amplitude
loadings. In normal situation, experimental fatigue loadings exhibit variable amplitude and nonstationary loading
pattern, for which the traditional frequency domain analysis cannot provide accurate results. However, the time-
localisation transform provides a promising solution. Since the S-transform if the sumplification of the advanced
time-frequency localization method, 1.e., the wavelet transform, it 1s a good idea to study this transform in order
to identify these fatigue features. The results obtained from this study showed that the high amplitude events
were detected m the variable amplitude loading based on the difference pattern of the time-frequency
localisation. These results were also compared to the plot of moving-damage using the Morrow’s straimn-life
fatigue damage model. Based on the promising outcomes, finally, itis proposed that further study of the
S-transform should be carried out in broader scope of fatigue life assessment.
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INTRODUCTION

Many experimental fatigue loadings exhibit time-
varymg and random pattern, or nonstationary
characteristics, which provide a challenge in signal
analysis. One of the traditional analysis approach for this
kind of loadings is related to their application in the
frequency domain by means of the Fourier transform.
However, this kind of analysis is not suitable for
nenstationary signals, as it cannot provide any
mformation of the spectrum changes with respect to time
(Newland, 1993).

Realising the hmitation of the Fourier transform using
nonstationary signals, thus, the time-frequency transform
1s more suitable method. Recently, a new time-frequency
domain analysis  has
analysing random pattern signal i.e., the S-transform
(Stockwell et al., 1996). This transform is an extension of
the ideas of the Continuous Wavelet Transforms (CWT).
As continuity to the CWT development, the S-transform
was introduced in this study in order to simplify the
analysis of variable amplitude fatigue loadings.

The objective of this study 1s to observe the
applicability of the S-transform i analysing varable
amplitude fatigue strain loadings. In addition, this study
can also show the potential of S-transform to the process

alsoc been introduced for

in determining the occumrence of fatigue damaging
features in the time-varyimng fatigue loadings.

MATERIALS AND METHODS

At initial stage of this study, it is a good idea to have
a literature background of the signal analysis. Thus,
information related to the Fourier transform, the Short-
Time Fourier Transform (STFT) the wavelet transform and
the S-transform is necessary. In addition, the background
of related fatigue damage models is also needed.

Signal analysis of random loadings: In the current signal
analysis techmique, frequency analysis 1s performed in
order to convert a time domain signal mto the frequency
domaimn. The results of a frequency analysis are most
commonly presented by means of graph having frequency
on the x-axis and amplitude on the y-axis. The algorithm
that is used to split the time history into its constituent
sinusoidal components is the Fourier transform. This
transform was expressed as the summation of sinusoidal
waves of varying frequency, amplitude and phase. The
most common algorithm used for the Fourler transform 1s
the Fast Fourier Transform (FFT) algorithm which was
introduced in order to have a faster discrete Fourier
transform  calculation of the time series (Smith, 1999).
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Various FFT algorithms were developed and the algorithm
which was introduced by Cooley and Tulkey (1965) is the
most commonly used because of its sumplicity and fast
computing time.

Using the frequency
components of an entire signal can be analysed, but it is
not possible to locate at what pomt m tune that a

Fourier transform the

frequency component occurred or its duration. This 1s not
problematic when a stationary signal is analysed.
However, analysis suitable
nonstationary signals. If there 1s a time localisation due to

Fourier is not for
a particular feature in a signal such as impulse, this will
only contribute to the overall mean valued frequency
distribution and feature location on the time axis is lost
(Newland, 1993). Thus, the STFT was later developed in
order to solve the uregularities behaviour of FFT using
nonstationary signals.

The STFT is one of the methods of time-frequency
analysis, which it aims to produce frequency information
with a localisation 1 time. It provides information about
when and at what frequencies a signal event occurs
(Matlab User’s Giude, 1998). The STFT approach assumes
that if a time-varying signal i3 divided into several
segments, each can be assumed stationary for analysis
purposes. The Fourier transform is applied to each of the
segments using a window function, which is typically
nonzero in the analysed segment and is set to zero
outside (Patacas, 2000). The most important parameter in
the analysis is the window length, which is chosen to
isolate the signal in time without any distortions.

The STFT was developed from the Fourier transform,
and it 1s defined as

X(t,0)= T ot —t)e "hit)dt

-

(1)

where h (1) e 1s the Fourier transform of the windowed
signal, @ 1s the frequency and 7 15 the time position of the
window (Chui, 1991). The result of this transformation is
a number of spectra, each localised in a windowed
segiment.

While a useful tool, the STFT has a resolution
problem, i.e. short windows provide good time resolution
but poor frequency resolution. On the other hand, long
windows provide good frequency resolution, but poor
time resolution. Thus, the wavelet transform 1s one of the
most recent solutions to overcome the shortcomings of
STFT (Grossmann and Morlet, 1984).

A wavelet 15 a small wave with a signal energy
concentrated in time, on the condition of admissibility
condition. The wavelet transform is defined in the
time-scale domain and is a significant tool for analysing

754

time-localised features of a signal. Tt represents a
windowing technique with variable-sized region. The
harmonic form of the wavelet transform can be derived
from the Fourier transform, which gave

X(m)= Th(t)sin(t;d] dt (2)

where a 13 a scale parameter which controls the
frequency by dilating or scaling the time ¢ The parameter
d translates the basic sine wave up and down the time axis
and it is known as the translation parameter. A wavelet
transform can be classified as either a CWT or a
Discrete Wavelet Transform (DWT) depending on the
discretisation of the scale parameter of the analysing
wavelet. The CWT is given by

W(rd)= Th(t)m(t—r,d) dt 3

As continuity to the CWT development, the S-
transform was introduced for the simplification to the data
analysis. The time—frequency
representation which an analysing function 1s the product
of a fixed Fourler sinusoid with a scalable, translatable
window (Pinnegar, 2006). It combines elements of the
wavelet transform and the windowed Fourier transform.
The S-transform can also be generalized to include
windows that have frequency-dependent fumctional form,
and frequency-dependent complex phase modulation,
essentially giving the phase-shifted wavelets.

The S-transform, which 1s
correspondence, i1s based on a moving and scalable
localising Gaussian window. The S-transform is unique
which provides frequency-dependent resolution while

S-transform 18 a

mtroduced in this

mamntainng a direct relatonship with the Fourer
spectrumn. These advantages of the S-transform are due to
the fact that the modulating smusoids are fixed with
respect to the time axis, whereas the localizing scalable
Gaussian window dilates and translates.

Accordingly (Stockwell ef al., 1996) the S-transform
of a function h(t) in Eq. 3 is defined as the CWT with a
specific mother wavelet multiplied by the phase factor, i.e.,

Ser,d)= e W(r,d) (4
where the mother wavelet 1s defined as
| e
w(t,f)= ‘ ‘ e &gttt &)

V2
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and f is the frequency of the samples. Written out
explicitly, the S-transform is mathematically defined as

£l

e
2n

{ropPf?
2

eﬂantdt (6)

s(td)= [ hit)

If the S-transform is a representation of the local
spectrum, a simple operation of averaging the local
spectra over time can be used to give the Fourier
spectrum, 1.e.,

|7 s(efyde=Hir) ™

Strain-life fatigue damage models: Tt is common that the
service loads acquired on components of machines,
vehicles, and structures are analysed for fatigue life using
crack growth approaches. This approach is suitable for
high capital valued structures. On the other hand, the
ability to mspect for cracks and momtor their growth until
a maximum allowable defect size 1s reached, enables a
component or structure useful life to be extended beyond
the original design life. However, it is not generally
feasible for applymng the crack inspection process for the
mexpensive components that are made m large numbers
because of the costs restriction. Examples of components
which fall in this category are automobile engine, steering
and suspension parts (Conle and Landgraf, 1983). For
these components, the life prediction based on crack
initiation is important in order to avoid the fatigue failure.
Therefore, a fatigue life estimation based on the related
stram-based approach is usually used i these cases
(Dowling, 2006).

Current industrial practice for fatigue life prediction is
to use the Palmgren-Miner linear damage rule (Palmgren,
1924; Mmer, 1945). This linear damage rule 1s
mathematically defined as

(&)

where D is the fatigue damage, n is the number of loading
blocks, N, is the number of applied cycles and Nj is the
number of constant amplitude cycles to failure. The
component will fail when the value of D 1s more than umty
or 1.0.

For the strain-based approach, this rule is normally
with the related stramn-life fatigue damage model. The first
strain-life model which has been mtroduced for the
life prediction  method is the Coffin-Manson
relationship (1954, 1965). This relationship
mathematically defined by

i
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'

5= (2N, )+ (2N, ) ©)

a

where E 13 the material modulus of elasticity, €, 1s the true
strain amplitude, 2N; 1s the number of reversals to failure,
0’ is the fatigue strength coefficient, € ig the fatigue
ductility coefficient, b is the fatigue strength exponent
and ¢ is the fatigue ductility exponent.

In some realistic cases, the situation of fatigue
spectrum loading involves non-zero mean stresses or
strain. The mean stress effect model which is applicable to
be used for this study 1s the Momrow’s stramn-life model
(1968). Mathematically, this model is defined as

e otf)
E

where o, is the mean stress of a particular cycle.

Despite of the fact that these models are widely used
for fatigue life prediction, several limitations were also
found in the analysis using variable amplitude loadings,
which it may lead to the erroneous prediction. The fatigue
damage is accurately calculated for Constant Amplitude
(CA) loadings when using the Palmgren-Miner rule with
these two models, especially for the research and
industrial applications (Fatemi and Yang, 1998).

G—mj(sz )+ & (2N, (10)
G

RESULTS AND DISCUSSION

Signals selection for the analysis: The accuracy of
analysing variable amplitude fatigue stramn loadings was
evaluated by the application to two loading types.

The first category consists of an artificial loading
which was defined to test the possible behaviour of the
fatigue failure. The basic statistical properties of this
loading was summarised in Table 1, while the time lustory
and the frequency spectrum based on the Power Spectral
Density (PSD) distribution were shown in Fig. 1. For this
case, the PSD plot shows the vibrational energy
distribution of a signal in the frequency domam.

The T1 signal, as illustrated in Fig. 1a, was defined to
have 16,000 data points which were sampled at 400 Hz.
The logic of producing T1 was to verify the S-transform
ability to 1identify the sections of fatigue damage
occurrence, especially with a signal containing large
transients in a small amplitude background T1 consists of
a combination of sinusoidal and random segments of
different amplitude or frequency. This loading was
intentionally defined to be a mixture of both high
amplitude bump events and low amplitude harmonic
backgrounds.
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Table 1:Global statistical parameters of the loading used for this study

Global statistical parameters

Loading
name No. of data points Loading length [s] Mean [u€] rm.s.Ju€| Skewness Kurtosis Crest factor
T1 16000 40.0 0.0 1.5 0.1 7.4 39
T2 23000 46.0 15.0 16.7 -01 34 34
Ee @ an automobile. The global statistical properties of the
2 3- loadings are presented in Table 1, while both the time
H o histories and the frequency spectrum were presented in
:_g 20 40 Fig. 2. T2 (Fig. 2a) is the strain loading which was
5 -3 measured on a lower suspension arm of an automobile
‘%-6 travelling at 34 km h ' over a pavé test track. It was
Time (sec) sampled at 500 Hz for a total of 23,000 data points,
097 @) producing a record length of 46 sec and it has a tensile
0.5- mean loading of 15.0 microstrain. Figure 3a and 3b showed
' a section of the pavé test track used to record this signal
7 07 and the strain-gauge location on the lower suspension
8 0.6 arm during the test, respectively.
vg 0.5
=2 0.4 Global signal statistical analysis: From the global
5 0.3 statistical parameters in Table 1, the kurtosis values for
03 both signals indicate an interesting discussion towards
| ]\ the behaviour of random pattern signals. Kurtosis,
0'1 T T T Y . . . . . .
20 50 73 100 o5 V\_/hlch is the.s1gna_l 4th stgt1stlca1 mp_ment, is the_g!obal
Frequancy [Hz] signal statistic which is highly sensitive to the spikiness

Fig. 1: The plots of T1: (a) Time histories, (b) Frequency
spectrum of PSD

Amplitude (microstrain)

[3%] [ ) + on

S e & & &
L

Time (sec)

o e
w -

Amplitue (ne’/Hz)
o
o

e
st

e

10 20

30 40 50

Frequency (H,)

Fig. 2: The plots of T2: (a) Time histories, (b) Frequency
spectrum of PSD

The second loading type contains the time histories
which was measured on the suspension components of
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of the data. For discrete data sets the kurtosis value is
defined as

n —

Z(Xj - X)4

=1

__ (11)

n(rm.s.)*
where is the instantaneous value, 1s the mean value of a
signal, r.m.s. is the root-mean-square value (represents the
amount of the time-domain vibrational energy of a signal)
and n is the number of values in the sampled sequence.
For a Gaussian distribution the kurtosis value is
approximately 3.0. Higher kurtosis values indicate the
presence of more extreme values in a Gaussian
distribution, showing the behaviour of a nonstationary
signal. The kurtosis value is used in engineering for
detection of fault symptoms because of its sensitivity to
high amplitude events (Qu and He, 1986).

For both loadings, the kurtosis values were more than
30ie.,74 for Tl and 3.4 for T2. It is suggested that both
loadings have a nonstationary behaviour which are
suitable to be investigated using the time-frequency
signal analysis. Since nonstationary loadings are common
in the case of fatigue analysis, signal modelling has often
been used in the time-frequency domain (by means of the
wavelet transform) (Abdullah ef a/., 2006, 2007, Abdullah
and Zaharm, 2006) due to its efficiency for the purpose of
loading simulation. An alternative approach using the
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Straii gauue location (b)

Fig. 3: Road surface and a lower suspension arm used in
the measurement process of T2: (a) Pavé test track
used for the test, (b) Strain gauge positions on a
lower suspension arm for measuring.

S-transform is useful to be performed in order to observe
any possible signal variation in fatigue loadings.

Relation between the fatigue damage criterion and the
S-transform: The results of analysis were presented in
two forms of graph, i.e., the moving-damage based on
Morrow’s strain-life fatigue damage model, and the time-
frequency localization mapping by means of the S-
transform.

Figure 4a shows the pattern of the moving-damage
that was calculated using the Morrow’s strain-life fatigue
model. The purpose of this analysis was to show the
loading segment which has high damaging pattern. From
this figure, it has been shown that there were 5 sections
of fatigue damaging occurrence. Comparing this plot with
the original T1 loading (refer to Fig. la), the fatigue
damage occurrences were located within the same period
of high amplitude events of T1.

This T1 loading was then analysed by means of time-
frequency localisation using the S-transform, as the result
were shown in Fig. 4b. This figure shows the pattern of
high amplitude events that were detected at the same
position of the original T1, for which these events were
distributed between 0.5 to 5 Hz. In order to match up this
result with the moving-damage analysis, it was shown
that the time-frequency localisation mapping of this signal
by means of the S-transform (simulated in the Matlab®
environment) occurred at the similar position to those
fatigue damaging events.
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Fig. 4: The pattern of high amplitude events produced by

the S-transform for T1

Using the experimental data set of T2 (Fig. 5) the
moving-damage pattern (Fig. 5a) was observed and
compared to the time-frequency localisation mapping
(Fig. 5b). In Fig. 5b, several patterns of high-energy
localisation mapping were observed in the time-frequency
plot. Comparing to the information extracted from the
artificial signal of Fig. 4, the experimental measured fatigue
loadings (T2) showed several occurrences of fatigue
damage features.

Since T2 exhibit almost a random pattern with several
transient effects (the loading is nonstationary based on
the statistical values in Table 1) the pattern of low-energy
localisation mapping has been observed in the most of the
time-frequency plot. From the findings of Fig. 5, it is
suggested there is a possibility that the fatigue damage
features can be accurately detected using the S-transform.
However, further investigation should be performed in
order to determine the change-point detection of where
are the starts and end positions of the identified fatigue
damaging features in a variable amplitude fatigue
loadings.

The results of this study demonstrate the capability
of this transform to identify fatigue damaging features in
avariable amplitude fatigue strain loading. The simulation
result showed the significant high amplitude events have
been detected from the colour differences of this time-
frequency localisation technique. Finally, it is suggested
that the S-transform is one of the suitable methods to be
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Morrow's mean stress correction
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Fig. 5: The pattern of high amplitude events produced by the S-transform for T2

used for the fatigue features detection.
investigation should also be carried out in order to

discover meaningful results.
CONCLUSION

The objective of this study is to investigate the
applicability of the S-transform to determine fatigue
damaging events in a variable amplitude fatigue loading.
The simulation results showed that the high amplitude
events were detected in the variable amplitude loading
based on the difference pattern of the time-frequency
localisation. Thus, it 1s suggested that the S-transform is
able to detect fatigue damaging events from a random
fatigue loading. With the findings of this study, it is
suggested that further developments in the S-transform
will find applications in a broad range of disciplines,
particularly in the fatigue life analysis research.
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