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Abstract: The complexity of the geometrical shape in reinforced concrete amplified the difficulties of shearing
resistance 1n the boundaries limits state in particular for a section, which 1s submitted to the eccentrited biaxial
loading (biaxial force plus bending). The difficulties in this study results in the determination of the ultinate
forces and and the relationship between them. These difficulties are essentially du to the geometrical shape,
the steel disposition and the law behaviour of the concrete and steel. The main objective of this study 1s to
present a methodological study based on the integration numerical method that would determine the ecquations

of the interaction curves fitting for the determination of the steel sections and the verification of the shearing

resistance.
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INTRODUCTION

In this case of simple loading such as bending and
compression, the value of shearing is less difficult
because 1t depends on one parameter; M,” (ultimate limit
moment) for the simple bending and N, (ultimate limit
force) for the simple compression.

For the shearing resultats, we have to verify the
following condition:

MM,
N<N,

for simple bending.
for simple compression.

where M and N are forces du to external loading.

Whereas in axial force plus bending, the problem
become more difficult because it depend on two
parameters( N, et M, ) 1 this case of the axial force plus
bending and on third parameters (N, M, et M,, ) in the
case of the biaxial force plus bending.

The axial force plus bending parameters aren’t
independent, therefore:

N, =
Nu =

f,(M,,) for axial force plus bending.
£, (M., M, )for bi axial force plus bending.

The function f; (Fig. 1) define the interaction curves.

Their graphical performance is flat and the function f,
(Fig. 1) defines the interaction surfaces and their graphical
representation is space.

To verify the shearing resistance under axial force
plus bending (eccentricity), you must insure that at each
tume:

» In the case of axial force plus bending, the
coordonndtes point (N, M) must be inside the
delimited surface by the interaction curve defined
by f,.

¢+ In the case of biaxial loading plus bending, the
cocrdonnates point (N, M,, M,) must be inside the
defined volume by the interaction surface whuchis f,.

Where:

N 1s the normal compression load provoked by external
loading.

M, 1s the moment over the principal axis xx provoked by
external loading.

M, is the moment over the principal axis yy provoked by
external loading.

The problem to be solve 1s to find functions £, and £,
which depend on some factors such as, geometrical shape
of sections, the mechamical characteristics of materials
(the behaviour diagram of concrete and steel) and the
position of the stroke steel. Those factors make these
equations very complicated.

Although these difficulties, the only solution which
could exit are the graphical ones.
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Fig. 1: Interaction surfaces and curves
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Fig. 2: Behaviour’s law of the material

The problem is more difficult for biaxial loading plus
bending because the graphical representation is spaced,
which wouldn’t allow their use over a plan.

To solve this problem, we must find firstly a
relationship between M= f; (M..M,) and therefore
establish a relationship N, = £, (M Jand this is to reduce
the spaced problem to the plan problem which makes the
graphical method’s useful.

Many  authors  such  as Pannel (1968),
Bressler (1960), Ramamarthy and Khan (1968),
Mallikajuna and Mahdevappa (1992), Wolfgang (1976)
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Fig. 3: Analysis curve

and Cermak (1962) have looked to tlis problem for
particular sections  defined by  differents
approachs.

and

ASSUMPTIONS

Material behaviour (Fig. 2)

We consider a good grip or adherence between steel
and the concrete.

The tensed concrete 1s neglected.

The straight section remains straight even after
deformation.

The section has to be taken short which doesn’t
allow distortion.

MATERIALS AND METHODS

Analysis procedure: To determine the outline curve f;, we
must change the orientation of the neutral axis on (from 0
to 360°) (Fig. 3) and for each orientation of the angle we
must do a translation of the neutral axis (from one interval
of 0,1h, to 2.4h,).

For each translation we can determine N, M,
Mywhich really represented a point in the curve f;.

The efforts N, M,. M, inside the reinforced
concrete are determined in function of the position of the
elementary section of concrete ds; and of the steel A;
{(from the neutral axis and the principal central axis).

N, = J.Ghl.dsi +> Ao,
SM,, = jchl Yudsi + > A6y,

M, = _‘.bexbi'dSl + ZAi O X,
H
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To determine the effort, a numerical program based
over numerical mtegration methods is essential and
needed.

Once the obtained efforts are known, we do an
analysis to determine a relationship of type f, which could
be independant of the orientation of the angle of neutral
axis and of the steel.

POLYGONAL SECTIONS CASES

Concrete only
Geometrical parameters: We take the geometrical
parameters in function of «<h» to consider the sections

adimensionel.
Let’s tale N a number of polygonal sides.
- Angle Pand «

B =7 N-2 o= E

2N N
Width of the polygonal side:
-forNeven w« H=hSina
- for Nuneven or odd number
ah=2—"2%
1+ cosa

reduced height A(from the peak to gravity center of the
reduced section of polygonal):

e ah

hyh=—
251N

G

Basis elements: The all polygonal section are constitued
of a (2xN) triangles represented on triangles (Fig. 4):

The basic triangle is divided in many elementary
sections (Fig. 5)

#  =Number of elementary section
1. = Number of line
J o = Number of column

sincel,, =J,..

let’s take b.h and v.h respectively, the basis and the
height of the triangle.
The dimensions of the elementary section will be then:

Fig. 4: Polygonal sections

thebasis gh= J—

d_h:ﬂ
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the elementary section surface
bz

a,h’=gdh’ = b’
Remarks:
bh=22
2
zh=h,h
In general when:
IT21 . — x=(J-1}d+—

If OX and OY are the principal central axis of the
totale section, 8 the rotated angle of the axis ox and oy
from the OX, OY and XY, the coordonates of the point
o from OX, OY; therefore:

X, =X, +x 0050+ y, sine
Y, =Y, -x;8n0+ y cos0

with:

sin 2o

X, = b,
O=o+m

_ 2
Y, =h,.cos’a
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Fig. 5. Elementary sections

Starting from the calculation program essentially
based over the numerical tegration method’s, we
determine:

N, = > ds o,
Mbux = sti 'Gb1'-Y1
My, = > ds 6, X,

The reduced forces (for the adimensional section) will
follow this form:

— Nbu
Vy N
h2

Gy, -

— th
oy, "k
Gy -
T
(-3 3

G,,-h

The steel framework: The efforts (et) inside each steel
framework are calculated i function of the imposed
displacement by the concrete and the distance behind the
neutral axis (Fig. 5) taking in mind the behaviour’s law of
the steel.

The efforts in the steel framework section are
calculated in the following manner:

N,=n>)'N, M_=>N_e, h
— Ea'Shu
- ke,

g €
g, =—2e_  h—=
kh €

au

Cai = Wiy

J. Eng. Applied Sci., 2 (4): 739-744, 2007

14 Horizantal neutral axis
1.2 nbr = 3,g= 2200, ¢ =0.04
1
g
2 0.8
=]
= 0.6
0.4
0.2
0 T T T T T 1
0 0.05 0.1 0.15 0.2 0.25

Moment px

Fig. 6: Type of résults for neutral horizontal axis

(Interaction curve v = f; (1t,) = flu, )

if we,, =1 — % _q
Gau
(plastic compression domain)
. o
if —l<ye,; <1 ——S=we,,
G

a

{elastic compression or tensile domain)

if ye,, =1 50—

GSU
(plastic tensile domain)
hence:
~n.(Ah*)
Ab
(steel percentage)
GSU
m=—2
Ghu

(equivalent coefficient)
"P.n”is called mechanical percentage

Ay
a, =
n,.h?
(remind constant)
N, = (A b,y RO O’

.=
n.A .c o h

a, .pm.i(chu D) =a, pm. L (c, h*)
G

au
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Biaxial loading
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Fig. 7. Type of résults for neutral oblic axis (Interaction
Curve)

N, and N, are respectively the total effort in the
framework and the effort in the framework;

M,, 18 the provoked moment by the overall steel
compared to the neutral axis.

Cn. G and e are the eccentricities respectively
compared to the axis and;

A and o, are respectively the frameworlk steel section
and the effort n the framework steel .

n, and n, are respectively the total number of steel
and the steel number by side of the hexagonal section.

We call v, the reduced effort in the framework by
mechanical percentage;

Masi» Ma and p, are the reduced moment by the
mechanical percentage inside the framework i compared
respectively to the axis ¥Y andXX; hence:

al

v =PI —v_ =pma, ()
i P oo e P DS
My = P Na"(e“;h) = Uy, =pma, e,
o 11
N,.(e_..h)
oy = PI0L ;"3 —u,, =pma e
bu -
N_.(e_ .h)
Koy =P o =l =pmag L) e
bu
The effort in the reinforced concrete: In the

calculation program that we have done and realised in
our laboratory of the University of Constantine, the
reduced effort in the
determined m function of the mechanical percentage, the

reinforced concrete are
number of steel franework by arete also the wrapper d des

armatures (pm, m,, d) which we permitted to vary the

743

0.27 - - J .
A e
%0 0.05 01 015 el 025
moment p

Fig. 8: Type of curve v = f4(,)

equivalent coefficient (quality of steel and concrete) and
the percentage steel also the disposition and the wrapper
of The reduced efforts inside the reinforced
concrete are:

steel.

v=v, +apmy Q)
M, = W, +apm> Qe
By = My +apmY ey

Case of the hexagonal sections: The program elabored
has permitted to determine the following relationship f; for
the hexagonal sections. The results are down on the
following curves (Fig. 6-8).

CONCLUSION
This method based on numerical mtegration
method’s has shown that the calculated shearing

resistance of the hexagonal section at the biaxial
eccentrited compression would be reduced to the
calculation of the shearing rersistance of the imaxial
eccentrited compression. This 1s shown m Fig.8 it s
clearly shown that curves and are similar and the
same:

v="1 (1) =f(n,)

This methodological approach has for task and target
to verify the shearing resistance and to determine the
bearing capacity of the considered section. Therefore the
determmation of the followmmg f relatonship is
necessarily. Tt is possible to enable this method to many
types of sections.
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