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Contribution to the Development of Approximate Solutions for the

Quasi Linear Equations Characterizing the non Permanent Flows in
Channels with Removable Bottoms
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Abstract: The numerical models for computing simultaneously the liquid flow and the bed loads mn natural
channels exist recently. Actually, they have reached such a level of development that they can be used in
engineering. These models can simultaneously solve the equations related to the liquid flow, solid transport
and the deformation of the bed. We will present in this study approximate solutions using the equations of
St-Venant related to the non stationary flows mn natural channels with removable bottoms.
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INTRODUCTION

The consist of beds permanently exposed to
deformations m length and width due to the flows.

Generally, in a steady regime, the bed can remain
stable, if the concentration of the current of water 1n solid
particles does not exceed saturation. As soon as the mode
becomes nonpermanent, more or less significant
deformations can be noted. Following the erosion of the
bed, water will be charged until reaching saturation. This
situation gives birth to solid transport by haulage or
suspension. At the begmmning, erosion is more intense
and weakens with time once that the bed reaches its new
balanced profile.

Indeed, according to the characteristics of the river
(the slope, the grading of the material which constitute it)
and of the liquid flow on the one hand and the
concentration of this latter in bed load on the other hand,
there will be either the deposit of the solid particles, or the
erosion of the bed. It is a self controlled system: the
current of water deforms the bed, but the change of the
bed leads to the vanation of the field velocity and
influences the flow.

Solid transport by haulage and in suspension
depends on the dimensions of the materials of the bed,
the flows, the frequencies of these flows and the
hydraulic slope. In order to better determine the various
aspects of this study and concerming the application
of the method of the characteristics for very simple
cases of the interaction between the current of water
and the bed, we briefly examine certain characteristics
of the mivers related to the computing of the
nonpermanent flow in the rivers with removable
bottoms (Cunge, 1988).

FALLING VELOCITY OF THE SOLID PARTICLES

The problem of the determination of the falling
velocity of solid particles 1s related to the problem of the
resistance of the liquid to the movement of these particles.
The form of these latter’s in the case of the transport of
fines in suspension is wvariable. Nevertheless, the
prevalent form 1s spherical. The solid particles reach their
falling limit velocity when the resistance of the liquid
becomes equal to their weight (Levy, 1957; Graf, 1971,
1984).

nd’ n.d’
F=kp9;——=(p ~plg~ M

where: p,-density of the solid particles; k-trailing
coefficient; 8, -falling velocity of the particles; d-diameter

of the particles; from where:

k=2 g d (2)
3p 9;

In addition, the force of resistance:

2
F:3pn08ud:kp8§%

12 12 @
hence k= v 2
9,d Re

Where v: dynamic viscosity coefficient.
The experiments undertaken by Stokes, Prandtl
and Von Karman have shown that the behavior of the
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particles depends on the Reynolds number (Re). The
results obtamed can be summarized as follows
(Reynolds, 1974; Prandtl, 1935):
For Re<1.0; D<0.10 mm, the mode 1s laminar and the
formula of Stokes is checked:
2
ey “
180 p
For 1< Re < 30, the theory of Prandtl 1s checked, for whom
(smooth bed):

(P —piegd _ 56 (5)
P9 WRe
This zone corresponds to the particles of d = 0.10 + 0.6
mm.
In the zone of turbulence, two modes are noted and
the formulas of Karman can be applied:
*transitory zone: 30 < Re < 400 and d = 0.6+2.0 mm

gd"*(p.p)
2,20"%p

p (6)

*quadratic zone: Re > 400 and d > d 2.0 mm

8, =1,2 ’gd(&fl)
P

Tt is worth noting that there are other criteria and other
formulas for the determination of the falling velocity v;.

7

We quoted the preceding formulas as an mdication.

Critical velocity and concentration of solid particles: The
critical velocity is the minimal velocity which ensures
transport in suspension of a given quantity of solid
particles. Consequently, the critical velocity varies
according to the quantity and the falling velocity of these
particles. Its mimimal value corresponds to the transitional
stage of transport by haulage in transport by suspension.
To determine the value of the critical velocity, it is
necessary to know the distribution of the solid particles
according to the depth as well as to the turbidity of the
current of the water (Graf, 1971, 1984).

The experiments carried out by Knoroz have allowed
the obtention of the following relation:

Ve Vo 21.6
n= i Q)

&)

687

Where: p-average turbidity of the water current. v-critical
velocity. v, -mean velocity of flow which corresponds
to the begiming of the movement of the aggregates
by haulage.

Given that v, >> v, the relation (8) can be written as:

v d
_ or 4 1.6 9
u 0(—90) R ®)

The coefficient C, following Knoroz is equal to 0.006.
For the critical velocity, Knoroz proposes the
following relation:

v, =v, +3.530{/J(%)”4 (10)

To determine v,, we can use one of the following formulas
of Vélikanov

% o 14d+58mm an
g
or of Levy: (Velikanov, 1955)
(12)

1/5 112
v, —1_4{11} {gdyl_q
d ¥

For the determmation of the current of turbidity, there are
several formulas. One will quote, as an example, the
following relations established by Zamarine (Levy, 1957):

= 0.022(%)3’2\@; If 0.2<8, <0.8cms™ (13)

0

AFY

w=1lv, JRi—=;If 004 <9, <02cms” (14
9

1]

Knowing the bed load Qs = y bg, = vbqp and using the
formula (9), we get:

Qs= c\ﬁ[dj ﬁ ¥qb = Ayqbv* (15)
91 R
where:
c d 1.6
5 x)

liquid q flow; b width of the river; qs-bed load specific.
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EQUATION OF DEFORMATION OF THE BED

The deformation of the bed is due to imbalance
between the quantity of solid particles deposited on the
section concerned of the channel and that carried out
towards the downstream Level If the rate of the flow
increases, there is the erosion of the bed; if it decreases;
one notes the deposit of the solid particles. So the
equation of deformation of the bed can be obtained by
establishing the assessment of the solid particles on the
section concermed of the river. This assessment is
identical to the equation of continuity of the non
stationary flow.

Let us examine a section of a bed having a length Ax,
a width b and a depth h. Let us suppose that the flow Q is
constant and that the flow 15 gradually varied. Tlus
enables us to consider that the flow is telegraphic and
that the hydraulic parameters depend only on x and t. This
condition is very significant, since by analyzing the local
deformations of broad rivers, we must divide the current
of the water into a series of filaments of water by the
method of Bernadsky (1933).

The dynamic equation of the gradually wvaried
nonpermanent flow 1s written as follows:

z

2
oy_oz oh_ o v, v 1&g
dx 0x 0x dx 2g° C'R gat
According to Fig. 1, we can write:
Qs Qs
s —(Qs+ ——AX) |At = ———AxAt
{C? Qs+ 8% o

This difference must be equal to the weight of the
quantity of materials deposited or snatched;

Y. AW =v'AzAxb = y'b%AtAX

Thus: - 22 Axat = b O AtAx 17
o a

Where —— 0Qs 'b—:
ax e

vy’ -Specific weight of the solid particles.

According to Eq. 15, the bed load Qs is function of
flow rate (v), of the falling velocity () and of the relative
roughness (dih) of the bed: Qs = yf(v)bAq ; for each real
cases, the values of 0, v ; and dth are given; That’s why,
we can consider that A is constant. In this case:

Qs v
= vyAbf'(v)—
TART(V)~ 4

(18)
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Fig. 1: Plot of calculation of the deformation of the bed

av oz
Af (v q=—y =
Y. ()zq L

(19)

from where:

For the slowly varied flow, the form of the free face is
defined either by the back water curve of raising, or by the
back water curve of lowering. This 1s defined by the sign
of 9v'dx. The value dv\dx also depends on the form of the
bed, determined by the function b = f (x).

ov

&7&(( )=

bh oo i)

bh bdx hox

In the case of a bed with a contracting, the velocity must
increase dvidx > 0 and dbidx < 0.
Av [ Jand
0z

L) = v P (v)=4v7 f'(v)@ -
ox
} q=-v (20)

ot

16b+16h
bdx hox
the Eq. 19 takes the form:

—dyAv? {16b+ 1
béx hox

Since the values dh\dx and db\dx are negative, it follows
thatdz\dt < O, Thus, there will be the erosion of the bed.
This erosion 1s more intense than in the event of absence
of contracting.

Je

Finally the Eq. 19 can be written as:
In the case of a bed with widening and if there is a river
flow (h=h, where: h,-depth corresponding to the vniform
permanent flow), the formation of a back water curve of
raising occurs, i other words velocity decreases; which
means that and, therefore; consequently, there will be the
deposit of the solid particles.

Let us examine the two following cases:

Case of the flow of water in a short section, when
losses by friction can be neglected,

Case of the flow slowly varied m a long level, where
the forces of friction play a considerable role.

I%b,
y ot

16b+16h
bdx hox

21)
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In the first case, the equation of deformation of the
bed can be solved m a sunple way without additional
conditions if the shape of the curve of the free face 1is
given.

In the second case, it i1s necessary to take imto
account the forces of friction and the equation of
deformation of the bed must be solved using Eq. 16.

We will examine the two following cases.

DEFORMATION OF A SECTION
ON A SHORT DISTANCE

Larger = C *: Let us study the deformation of a short
section of a chammel under the conditions of a one-
dimensional flow. Let us use agam the equation of
deformation of the bed:

ov oz
Al' () g = -y = (22)
T (v)E 4=-77

Letus pose f(v) =v *; f'ivi=4vi= Aq’ (23)
h3
Let us consider, at first approximation, that the water level

mn this section 1s constant with respect to time, but is
variable with length: v = f (x); consequently:

Sy _
y=h+ sz(x),at =0
In other words y = f (x.t); the variation of v in time can be
neglected without any particular influence on the
precision of the calculations, but the variation in space
carmot be neglected. By taking mto account what
proceeds, one can take:

v @ .q

¥_0@8y  4oh oz & (24)
ax &x'h

e a a

Upon substitution of the expressions obtained (23) and
(24) into Eq. 22, we get:

@:0' or:ﬁ@+@:o (25)
hax ot

5
With &:4%q

¥

The solution of the Eq. 25 is equivalent to the solution of
the system:

v
Tnitial position ~ FFinal position

Fig. 2: Diagram of deformation of the bed

.ﬂy

A J

Fig. 3: Diagram of calculation

dx dt dh
A1 )
n’
A A
Thus:dx=—-dt; Where: x-x;=—t (27)
h h
At
h::q(ii;——x) (28)

where: ¥: function defined by the mutial conditions
andh=y-z

The Eq. 27 gives the translation velocity of a
constant depth along the channel during the erosion of
the bed. It 1s noted that value x - x, 18 proportional to t, but
the scaling factor A'h’ is larger, when the depth is
smaller; consequently, a bed with a soft imtial profile, 15
transformed gradually into undulations with soft upstream
slopes and stiff downstream slopes (Fig. 2).

By using the formula (27), we can easily calculate the
deformation of the bed.

The problem arises as follows: the form of the initial
bed 15 given by z,= { (x) (Fig. 3); the level of the free face
is known and is taken constant for all the period of
deformation; we need to calculate the deformation of the
bed. To solve this problem, we proceed as follows:

+  One varies Xy, each one of these values corresponds
tohy = y1 -z,

*  One calculates the value x; = f (t); by the formula (27)
Since x; is a linear function of t, the results of
calculation can be represented graphically. On Fig. 4,
are represented lines with angular coefficients A \h’
corresponding to the given values of x; and h,.
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4 f / /
b,=c* /:,—c- L, / h,
t, h,
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Xa Xn  Xe  Xu  Xa e .
Fig. 4: Diagram of calculation x = £ (t, h,)
m
2 .
Fig. 5: Imtial form of the bed of the channel

By plotting horizontal straight lines, corresponding
to times of interest t, one obtains at the points of
intersection of these lines with lines x; = f(t) the
values x; and h,; consequently, we can build the
deformation of the bed of the channel at the end of

each interval of time.

Tt is not difficult to also obtain an analytical solution
for this case; to this end, it 13 enough to know only the
function which defines the initial form of the bed. Tet us
take, as an example, an mitial form of the bed with a cosine
law (Fig. 5).

2mx
Z,=a, +a,cos

s

where:  A-wave length;

Initial depth: 1, = y—2,=y—a,—a cos

a,- its amplitude.
2mx,

s

Attime t: h =7y - z; by replacing x,by its expression in
the formula (27), we find:

So y = Cte, the Eq. (29) can be solved compared to x =
(t,2):

At

(29)
(y—2)

2n
Z=a,+8,c0s—| X—

z—a, At

(y—z)

X = LAIC cos( (30)

+
2n )

4,

By analyzing the formula (30), we can see that the
displacement of a certain pomt with a height z 1s directly
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Fig. 6: Diagram of deformation of the bottom of the
section with contracting

proportional to time t and inversely proportional to
{(y - )’ ; The larger z s, the more the second term of the
right part of the equation is large. That means that the
top of the dune moves more quickly than the remainder
of its points, which shows that with time, the profile of
the bed will take a form with upstream slopes softer
than downstream slopes.

If we also takes into account the variation of y = f(x),
1t will be more convement to use the formula (29); by
considering that x, is given, we determine t = f(z) as:

5
t=|x— iArccos(—Z_ %y 3 -z
2n a A

1

(31

1

where x and y - constant values and z variable.

Width of the variable bed: Let us consider now that the
bed of the channel narrows then widens and then find the
deformation of this section (Fig. 6); let us also suppose
that the banks are stable.

To analyze the deformation of the bed, we use
Eq. 17; Replacing

éz_ ah

2 o

and Qs =vAQV",
at Qs =vAQ

ch

ov
one finds : dvAv'Q— =+
Y. an Tho
ﬂa&)_
)= e

Q'é Q
wAZ S8
! 0)36)(((0

(32)

where
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dx _dt_do
A 1 o0 (33)
0)5
two equations are obtained:
X,égzg (34)
o=fx0=C, (35)

Since b = f(x), by using the Eq. 34, one finds w = f(x, t).
Consequently, we have reached the preceding solution,
with only one difference; the required function is w (wet
cross section) instead of the depth h.

By applying the same process, one finds:

At
X=X, +— (36)

5
1

Knowing the initial profile of the bottom z,= f(x) and
the form of the bed m plan b = f(x) and by supposing
that b with a given section 1s constant (case where the
banks are stable), we find on the graph x = f{t) a series of
straight lines; each one of them corresponds to a value
w, this last value 13 obtained by using the iutial
conditions expressed by x, (Fig. 7).

By plotting horizontal straight lines for the intervals
of times considered t,, with their intersection with the lines
x = f (1), one obtains the distances for which the cross
section will be equal w, at the time t.

Simce the width of the bed in these sections 1s knowr,
we can easily determine the depth of the water channel,
1.e., the new coast of the bed. So one plots the deformed
profile of the river.

The analytical solution can be obtained in the
following way: At time t = O, the value w,=bh ;= f(x) 1s
known; consequently, one can find the relation between
C,and C,.

, Cl=m,=bh (37)
This relation can be expressed graphically while reporting

on the x-axis (0 _ and the y-axis 0 _
C =%, ¥ C,=m,

Let us examine, as an example the particular case
studied by Exner (1925):

h, = Cte and b = a(c + cosax); in this case:
C,=h;a(ctcosuC,) (3%)

While replacing in (38) the expressions of C , and C , in
(34) and (35), one obtains:

At

I
e

)} (39)

e=ha(c+ cosux) —hua{c + cos (X —

The value of h can be determined by the method of
successive approximation by using the expression:

h h
(—-1c+—cosux =cosal (X —
hD hﬂ

At

Ly o)
b’h

In this case, one must give the values of h and x to
calculate t One notes that if cosax<O (section with
contracting), the depth increases with the increase of t;
when cosgx>0, the depth decreases. Consequently,
erosion is more intense on the sections of contracting,
whereas on the parts of the bed with widening, there are
significant deposits.

The analysis made previously is accurate for beds of
low widths. Tn the opposite case, the examination of the
deformation of the bed becomes particularly more
complicated, because related velocity varies not only in
length but alse in width

Numerical application: Tet suppose that the initial form of

the bed is givenaccording tothe law: ; — 4 14 cos 2m,y
A

witha,=2m;a,=1.0m;A=40m;x ,=-20m;y=3595m,;
A=0.000004; y'=1.1 Tm™; q=6m¥s. The aim is to
study the deformation of the bed on a section with a
length equal to A.

AAq’y 4410761
Y 11

The parameters of the imtial form of the bed are calculated
as follows

The computations are shown n Table 1.

The diagram of calculation obtained is represented
on Fig. 8.

Time t is calculated by the formula:

=Q.11>

Solution: A=

(y-z)

1

t={x-x,)

Table 1: The parameters of the initial form of the bed

i Zyi % Zy;

X =-20 Zy = 1.0 X =15 Zys =2.7
X, =-15 Z;n=1.3 % =10 Zy; = 2.0
X3 =-10 Zyz = 2.0 X =15 Ziz=1.3
X4=-5 Zya = 2.7 X; =20 Zyp = 1.0
X=0 Zys = 3.0




J. Eng. Applied Sci., 2 (4): 686-693, 2007

Table 2: The peak of the dune moves with the section x =+ 5 m After 10155 sec

N° Section X (m) X, (m) XX g (m) X, (m) (m) h =y-z; (m) t(s) Erosion (m) Deposit (m)
2 -15 20 5 1.3 1.0 4.95 135084 0.30 -
3 -10 =20 10 2.0 1.0 4.95 270168 1.00
3 -10 -15 5 2.0 1.3 4.65 98819 0.70
4 -5 -10 5 2.7 2.0 3.95 43708 0.70
5 0 -10 10 3.0 2.0 3.95 87416 1.00
5 0 -5 5 3.0 2.7 3.25 16481 0.30 -
6 +5 0 5 2.7 3.0 2.95 10155 - 0.30
7 +10 +5 5 2.0 2.7 3.25 16481 0.70
8 +15 +10 5 1.3 2.0 3.95 43708 0.70
9 +20 +15 5 1.0 1.3 4.65 988192 0.30
4t Table 3: Necessary calculations to illustrate the phenomenon of deformation
; . p of the bed
A
k / / / X=X, +—t
> h
t, / / / // / Xo(m T@Ehm  10.000 20.000  30.000 40,000
-20 4.95 -19.63 -19.26 -18.90 -18.52
-15 4.65 -14.49 -13.99 -13.48 -12.98
b o o o/ o -10 3.5 -8.86 771 -6.57 542
-5 3.25 -1.97 1.07 4.10 T.13
t, / / / / / / x 0 2.95 4.92 9.85 14.77 19.69
- +5 3.25 803 11.07 14.10 17.13
o Fa e *os Fos +10 3.5 1114 12.29 14.58 14.57
+15 4.65 15.50 16.01 16.52 17.02
Fig. 7. Diagram of calculation of the deformation of the
bed x = f(t, h)) G
6 v=595
F
It arises from the Table 2 that after 10155 seconds, the 51
peak of the dune moves with the section x =+ 5 m. Here, 4 h
one notes a deposit a 0. 30 m height. 3
To know what occurs at the same moment at section 2.
x = 0, where is initially situated the crest, one was must 1
solve the following system with two unknown factors z a
and x;: 25 20 15 10 5 0 15 20 25

_ 5
=B x)=10155
A z=283m.h=312m
andx, =-3.77m

A z—a,
X, = —arccos(——
' oom ( 2 )

Therefore, as in pointx = 0, we will have erosion with
adepthof: 3.00-283=017m.

To illustrate the phenomenon of deformation of the
bed during the intervals of time t,, t,, t....., we will carry out
the necessary calculations in Table 3.

On Fig. 8, the phenomenon of deformation of the bed
at the time t; t, t ..., 1s represented according to the data
of Table 2.

These same results can be obtained graphically
by plotting the horizontal straight lines corresponding
to the tumes t, t, t,.... and by using Fig. 7; the points
of intersection of these lines with lines x ; = f(t) yield
the distances x,, for which within the interval t, the
depth will be equal to h. From the Fig. 8 we can see

Fig. 8: Diagram of the initial bed situation

discontinmties which start to occur after 27 sec

approximately.
CONCLUSION

The computing of the no stationary flow in channels
with removable bottoms 1s a very complex problem. It
remains an unexplored field for a thorough research. From
the analysis of simple cases the following conclusions
can be drawmn:

The complexity of the problem lies particularly in the
development of an analytical relation of the form of the
bed of the channel, which often requires the recourse to
graphical and analytical processes

The example of the studied problem requires
thorough knowledge as regards to the resolution of quasi
linear equations.
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