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Abstract: In this study we prove some theorems involving certain generalized coefficient inequalities for
multivalent and meromorphically multivalent functions defined by Salagean differential operator.
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INTRODUCTION

Let T (p) and M (p) denote the classes of functions
(z) and g (z) of the form

o0

fiz)=zP+ Z akzk (peN={12..1 (1)
k=p+l
and
gz)=z P+ Zakzk (pel (2)

k=p

which are analytic and multivalent in the unit disk
E=14{z: | z |<land in the punctured unit disk
U={z:| z|<l, respectively (Trmak and Owa, 2003).

A function f € T (p) is said to be multivalent starlike
m Eif it satisfies

Re {@} =0 zeE (3)
f(z)
and multivalent convex if it satisfies
Re{1+2f‘,’(z)}>0 zelE 4
f'(z)

Furthermore, it 1s multivalent close-to-convex if it
satisfies

Re {& (5)
p-1

} >0 zcE
Z

Also, a function g(z) € M (p) is said to be
meromorphically multivalent starlike in U if it satisfies the
condition

683

7g'(z)
8(z)

(6)

of{38)-

and meromorphically multivalent convex if it satisfies the

inequality
Re{—{“ j}>0 zel

see (Irmak and Owa, 2003) for details.
Here the author wish to give the following definitions
of the subclasses to be considered in this study.

7g'(%)
g'®)

(7

n+l
Tn(p,ot)={feT(p):Rew>ot, 0<a<l, zeE} (8)
"f{z)
Kn(p,a):{feT(p):Re&(s)>a, 0<a<l, zeE} )
P"z
Dn+lg(z)

Tn(p,a){feT(p):Re[ J>OL, 0=a<] zeU}(lO)

D"g(z)
where D" 1s the Salagean differential operator defined as
DOf(z)=f(z), D'f(z)=2f"(z), D"f{z)=2z(D" Izyy (11)

n=0,1,2.., ze(E U) (Salagean, 1983).

Let p € P such that P(z) is regular in E and satisfies
the conditionsp(0) = 1 and Re p(z) > 0 m E.

The aim of the present study 1s to estimate coefficient
bounds for each of the classes defined in (8) above. To do
this we need the following lemma.

Lemma A Aini ef of (2006). If p ePthen|C,| <2
for each k.
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Lemma B. Ram (1973), Nehari and Netanyahu (1971). Let
hizy=1+pz+p,Z+..and1 +G(z)=1+b,z+1",7° be
the functions of the class P and set

v
1 1 v
=—11+= =1
Tv - 3 E (IJBH > To

If A 1s defined by

o o
Dy aef@= A
v=1 v=1

then
| A, | Ram (1973), Nehari and Netanyahu (1971).

THEOREMS AND PROOFS
We state and proof the following

Theorem 1: Letf € T, (p, a). Then we have the following

mequalities
-1
i \az\iw, n=012,..,0=0=1 (12)
2[1—1
n—1
) a0y g10 <o (13)
3
1—o)[(1—oX5—20)+ (1-2*)—3-4"
(i) ‘a4|£2( A—ex [3+( ) ]’ (14
3.4
n=01L12..,0=0=<l
Proof: Since f € T, (p, a),we have
n+l
D™ i) =o+ (1-o)p(z) (15)
D"f(z)

for some p(z) € P. Setting p(z) =1 +cz+¢,2 + ...+ ... ¢, 2"
and comparing coefficients in (15) we obtain

2", = (1-a)e; — 2" (16)

(17)

2-3%a; = (L-ojey + 2" eg{l— o)l +ay)—2-3"

34y =(1-oicg + 3" (1- o1+ az) + 2" (1- w)agcy —3-4"

(18)

Using the fact that

684

e 2 k=p+1, peN={123..}

1 (16), we at once obtain inequality (1). Eliminating a, a, as
the case require , we obtain the inequalities in (12) and the
Theorem is proved.

Theorem 2: Let f € K (p, a)Then we have the following
inequalities.

Iaz\sﬂ*a) =0,12,..,0<a<1 (19)
2[1—1
n+1
lay | = 2 ([1170“) n=0,1,2,..,0=0<l (20
4
. n —
|36‘§Lia), n=0,12,..,0<o<1 (21)
n
|38|£M, n=012..,0<o<l (22)
81’1
Y
|32a4—332“§u n=90,12,..,0z0<1 (23)
4n—1
Proof: Since f € K, (p, a), we have
D f(z)
=o+ (1-c)p(z), (24
p'z”

for some p(z) € P. Taking p(z) as defined, and comparing
the coefficients in (23) we obtain

May =(-oe;, 0<o<l, n=0,12,.. (25)
4", =2"(1-o)ey (26)
6ag = 3" (1- o) (27)
8"ag =4"(1-a)cy (28)

Following the same method in Theorem 1, the
inequalities in Theorem 2 follow immediately.

We wish to inform here that all the coefficients of all
odd powers of z are zeros. Thus the theorem is proved.

Additionally, we also note that the coefficient
bounds of the functions in the subclass M, (p, a) being a
punctured disk may not be obtamable.
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