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Abstract: In this study, the equations of motion for a prolate spheroidal massive body as well as its azimuthal
solution has been formulated and applied to a physical system of rain-drop. It 1s shown that a prolate spheroidal
(massive) body 1s stable (no abrupt change 1n its structure) as it transverse the spatial coordinate (- oo, <o) but
its geometry has its corresponding consecuences and applications on the motion and structure of a particle

in the gravitational field of such a body.
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INTRODUCTION

Some five and a half decades of years ago, the
theoretical study of gravitational fields was a matter
almost exclusively treated to fields of massive bodies of
perfectly spherical geometry (French, 1971) simply
because of mathematical convenience and simplicity. An
example 15 seen in the applications of Newton’s
Dynamical Theory of Universal Gravitation (INDTUG) in
the treatment of the motion of particles (such as
projectiles, satellite, penduli and even gas molecules)
(Bowler, 1976) and the earth 1s treated under the general
assumptions  that the earth is a perfect sphere
(Richtmyer, 1955). Similarly, in the solar system the
motion of bodies (such as comets, planets, asteroids and
stars) is treated entirely under the general assumption that
the sun and these bodies are perfectly spherical in shape.
In the same light, Einstein’s Theory of Gravitation called
General Relativity Theory (GRT), the motion of bodies
(such as planets) and particles (such as photon) is treated
under the assumption that the sun is exclusively a perfect
sphere (the Schwarz child’s space-time) (Moller, 1955).
But the real fact of nature is that al rotating planets, stars
and galaxies in the umverse are either oblate or prolate
spheroidal in shape.

Tt is known that satellites orbits around the earth are
governed by NDTUG and the second harmonics (pole of
order 3), as well as forth harmomnics (pole of order 5) of
gravitational scalar potential due to imperfect geometry.
In 1952, Jeffrey’s (1952) suggested the forth harmonics,
which yielded amplitude of only 86% of the value
obtained by King-Hele and Merson (1959) from the
analysis of data on statistics orbits. ITn 1959, O’keefe,
Eckels and Squires (1959) improved on Hele and Merson
results using equatorial asymmetry for spherical shape. A
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year later, Vinti (1960) got a very good approximation of
the second harmonics which reduced the problem of
Sterne (1957) and Garfinkel (1958) quadratures by
applying oblate spheroidal coordmates to mvestigate the
motion of an earth satellite. Yet, there are still natural
occurrences whose geometrical shapes are prolate
spheroidal (such as rain drops) and their geometry will
have comresponding consequences and effects m the
motion of all particles in their gravitational fields as
pointed out in references (Musongong and Howusuy,
2005; Bakwa et al., 2003; Howusu and Musongong, 2005).
It 15 worth mentioming that the literature of the previous
work in this prolate spheroidal massive body has been
carried out in (Musongong and Howusu, 2004) and
Newton’s gravitational potential for a homogeneous
massive prolate spheroidal body formulated and
solved, with the exact and complete results given n
(2.25) and (2.26) for a field mnterior and exterior to the
prolate spheroid. The above idea gives a motivation
of the derwvation of equations of motion and
application to rain-drop and other physical situations
in this study.

Mathematical analysis: Consider a massive homogeneous
prolate spheroidal body as shown in the Fig. 1.

Let the Cartesian coordinates (%, y, z) be defined
by the prolate spheroidal coordinates (1, £, ¢) by
(Arken, 1962; Hildebrand, 1962; Anderson, 1967) as:-
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We chose 1 to be of same limit as £ for mathematical
convenience and physical applications.
Then the unit vecters i j k are defined by the
equations
1
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Fig. 1. A Homogeneous prolate spheroidal massive body

Conversely, the unit vectors in the prolate spheroidal coordinates are given by

ﬁ-(gz_nz)‘i[_n(gz_1)icosqﬁ_n(gz_1)ism¢j+g(1_nz)i1;] ®
1 1 1 1
£ = (&2 —n2)5[§(1 —1’]2)E cos ol + 2‘;(1_-”2)5 sin¢]+'n(?’;2 —1)E f{] 9)
&= —sindi + cosd)j (10)
Consequently, the derivatives of the prolate unit vectors (where the dots represent time derivatives) are given by: -
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Tt follows after differentiating and re-arranging that the velocity in metric prolate spheroidal coordinates is given by

1 1
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(15)

From (Musongong and Howusu, 2004) for a particle exterior to the massive homogeneous prolate spheroid, the

gravitational potential @(n), £) is given by the expression: -

Q(Em )| 7. 0)
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The equations of motion in the gravitational field of the prolate spheroid can now be formulated as follows:-
Let the kinetic energy equation be given by

= 2
HW@@—%MW@@{EEEEQ}
But
dﬂ 9%:(1) . R .
% =U(M.59)=Ugii+ Ugl+ Uyd

The potential energy is given by
V=M{n.£¢)P(n.E.¢)

where M 1s given m (Musongong and Howusu, 2004). Then the Lagrangean for the system 1s given by
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Consider the prolate field as a conservative system whose potential energy does not depend on the generalised
velocities so that the Lagrange’s equation for the system 1s also conserved. Hence the equations of motion are then

given by:-
Al (2 (e )| (e ) i ) )
o= , | Qs(E)sin) Lrs(a) @0
(17 )&B | gy (eppy(m) | AT
(22 —n?) <dQ §> d d
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and | (26)
Ozé(lfnz)(izﬂ)B‘l (22) r*sin” 6
where which is well known.
L, Ana’pg (85 1) (23)
B = 3 Speed of a particle in the above field: From (20) for a
and particle moving along the m-component at the origin we
332 have that
K,_{émpoa J G (24)
Wa =t £=0=0 @n
Azimuthal solution: From (22) we obtained the azimuthal |2
solutien s -l °)-(1nZ)K'B[LZPO(n)wZPz(n)J =
(1)
(17'”2)(&"2 71) where
where 1 is constant of the motion. Equation 25 is the 5 EoQo(E)
equation for conservation of angular momentum for L 74 & (29)
particles in the gravitational field of a massive prolate <déQ0(§)>
spheroidal body. This could be compared to that of =5
spherical body given by:- and
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Both L’ and T? are uniquely defined hence transforming
(28) we have: -

T? =

(30)
d
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RUU—EE% (33)
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Equation (32) is linear and hence its solution is given in
(Riley, 1974) as

L
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where A in (36) is a new constant and depending on the
boundary conditions available at a particular time. Given
a particular situation with (1, £ ¢) as explicit define
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parameters the evaluation of (36) has very many yet
undiscovered corrections terms and a refined solution for
a prolate spheroidal massive body.

Practical application to rain-drop: For a prolate
spheroidal point like body, the potential outside vanishes
at the boundary so that a nontrivial solution of (16) exists
and the first termn i (16) has no contribution as the
derivative is taken at £ = £,. We evaluated the harmonics
involved in (16) while allowing the radius a to vary from
end to end of the bedy, then

(37)

For simplifications we allowed motion only in the vertical
direction (harmonics) while keeping the motion in the
horizontal direction constant in time. That is

d

FERE G

, (3%)
d
0z iy =

where b 13 constant and n 1s an mnteger.
Using (37) and (38) we transform (16) to a nonlinear
differential equation as

fan =g (39)
where b, and K = 0. We let
X=Xp1 =%p (40)
so that (39) becomes
X(X+b-K)=0 (41)
or
X=K-b, x=0 (42)

The steady state will make sense only if K > b, since a
negative value will mean that the massive body 1s
contracting. For a small deviation we have

(43)

’ _ ’
Xpa =%,



J. Eng. Applied Sci., 2 (3): 625-630, 2007

where 1 18 some function and

df
r=—

(43)

Hence Eq. 43 shows that the bifurcation values are points
that demarcate the abrupt change in the structure of the
raindrop as 1t transverse (- o, o) in its motion for
mstance. The rain-drop therefore becomes stable under

(43) when P is not greater than unity acknowledging the
K

fact that the body is not expanding after condensation
(growinsize as it moves through the atmosphere). When b

K
1s greater than umty implies that the drop has absorbed

energy from the environment. This 1s hardly the case.
When P

K

shrinking and the resulting collision with atmospheric
particles increases thermal activities of the atmosphere
bringing about global warming. This is another source
of global warming of the atmosphere even though
there are rain particles in the atmosphere. On this note
we attribute warming of the atmosphere as a geometrical
consideration.

15 less than umity the size of the ramndrop

CONCLUSION

It is worth noting that the likes of Vinti, Hele and
Merson, O’keefe, Eckels and Squires, Garfinkel etc. have
been investigating the motion of an earth satellite because
they are faced with a natural problem that required a
solution just the same the one of global warming.
Equation (36) 15 an implicit expression for the speed of a
particle in the field of a prolate spheroid moving with a
speed compared to that of well known spherical body.
Equations (25) and (36) are very new and have no
analogue hitherto been found in nature. This could be
applied to atmospheric particles, plasma (gas) particles
etc. other than rain-drops for a plausible result. Tt is
expected that due to the geometry of the Earth global

warming 1s a geometrical problem than environmental
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pollution. Also with this result an appeal is made to
experimentalists physics
inclusive) as a matter of urgency to investigate all motion
of planets, rain-drops, comets etc., as has been carried out
theoretically 1n this study.

(plasma and atmospheric
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